- 1. 基于大模型能力,如何提炼出优质prompt(入门版)
姚瑞南
prompt系列课程人工智能AIGCchatgpt
本文原创作者:姚瑞南AI-agent大模型运营专家,先后任职于美团、猎聘等中大厂AI训练专家和智能运营专家岗;多年人工智能行业智能产品运营及大模型落地经验,拥有AI外呼方向国家专利与PMP项目管理证书。(转载需经授权)本文简介:入门版:基于大模型能力,如何提炼出优质prompt提示词的重要性和价值大模型基础能力简介prompt的基本定义如何定义优质的promptprompt的万能公式与套路prom
- 从System Prompt来看GPT-3.5到GPT-4的进化
herosunly
大模型systempromptgpt-3chatgptgpt4gpt4o
大家好,我是herosunly。985院校硕士毕业,现担任算法t研究员一职,热衷于机器学习算法研究与应用。曾获得阿里云天池比赛第一名,CCF比赛第二名,科大讯飞比赛第三名。拥有多项发明专利。对机器学习和深度学习拥有自己独到的见解。曾经辅导过若干个非计算机专业的学生进入到算法行业就业。希望和大家一起成长进步。 本文主要介绍了从SystemPrompt来看GPT-3.5到GPT-4的进化之路,希
- AI系统架构原理与代码实战案例讲解
AI天才研究院
大数据AI人工智能AI大模型企业级应用开发实战计算计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
AI系统架构原理与代码实战案例讲解1.背景介绍1.1人工智能的发展历程1.1.1人工智能的起源与早期发展人工智能的概念可以追溯到上世纪50年代,图灵测试的提出标志着人工智能作为一门学科的诞生。早期的研究主要集中在符号推理、专家系统等领域,取得了一些突破,例如机器定理证明、西洋跳棋程序等。1.1.2人工智能的黄金时期上世纪80年代,随着专家系统的兴起,人工智能进入了一个黄金时期。专家系统通过模拟人类
- 【多模态 AI】从跨模态学习到生成革命:文本、图像与音频的深度交融
网罗开发
人工智能AI大模型机器学习人工智能AIGC
网罗开发(小红书、快手、视频号同名) 大家好,我是展菲,目前在上市企业从事人工智能项目研发管理工作,平时热衷于分享各种编程领域的软硬技能知识以及前沿技术,包括iOS、前端、HarmonyOS、Java、Python等方向。在移动端开发、鸿蒙开发、物联网、嵌入式、云原生、开源等领域有深厚造诣。图书作者:《ESP32-C3物联网工程开发实战》图书作者:《SwiftUI入门,进阶与实战》超级个体:CO
- 美国采取行动扩大人工智能出口限制
数据分析能量站
机器学习人工智能
大幅拓展限制:美国政府(拜登执政末期提出)出台新规,显著扩大人工智能技术出口限制,构建针对先进芯片与模型获取的国际分级体系。出口限制范围:对多数国家限制出口人工智能芯片与模型,仅少数亲密盟友除外。新规创建三级体系,对不同国家区别对待,并首次限制大型AI模型封闭权重出口。规则运作方式意见征询与生效:新规在媒体曝光后发布,设120天公众意见征询期,供新政府参考调整,预计一年后生效。国家分级及限制一级国
- 通用人工智能的多层次提示词架构
AI天才研究院
计算机软件编程原理与应用实践大数据AI人工智能javapythonjavascriptkotlingolang架构人工智能大厂程序员硅基计算碳基计算认知计算生物计算深度学习神经网络大数据AIGCAGILLM系统架构设计软件哲学Agent程序员实现财富自由
通用人工智能的多层次提示词架构关键词通用人工智能(AGI),多层提示词架构,人工智能设计原则,算法原理,系统架构设计,应用案例摘要本文将深入探讨通用人工智能(AGI)的多层次提示词架构,阐述其背景、核心概念、设计原则和实现方法。我们将逐步分析这一架构在不同领域的应用,并展望其未来的发展方向。通过本文,读者将了解如何构建能够模拟人类智能的多层次提示词系统,并思考其在实际应用中的潜力与挑战。目录第一部
- 半导体、芯片、人工智能、智能驾驶汽车的趋势
不爱原创的Yoga
人工智能汽车
1.市场增长与需求汽车半导体市场:预计到2025年,中国汽车半导体市场仍将保持稳健增长态势,AI和能源将成为未来最重要的两大变革因素。2023年中国汽车电子芯片行业市场规模约为820.8亿元,预计2024年有望增至905.4亿元左右。随着新能源汽车和智能化的快速发展,一些新的半导体技术在中国汽车领域迅速应用,如集中式架构和高性能处理器需求正日益增加。AI芯片市场:随着AI技术的不断普及和应用场景的
- Minimax 开源的 4 百万超长上下文模型
百态老人
人工智能大数据笔记
MiniMax开源4百万超长上下文模型MiniMax开源模型概述2025年1月15日,MiniMax发布并开源了MiniMax-01全新系列模型,这一举措在人工智能领域引发了广泛关注。该系列包含基础语言大模型MiniMax-Text-01和视觉多模态大模型MiniMax-VL-01。MiniMax作为大模型六小强(或六小虎)企业之一,其推出的这一系列模型有着诸多独特之处。这一系列模型的开源是Min
- 程序员创业公司的技术栈选择与性能优化
AI天才研究院
ChatGPTAI大模型企业级应用开发实战大数据AI人工智能大厂Offer收割机面试题简历程序员读书硅基计算碳基计算认知计算生物计算深度学习神经网络大数据AIGCAGILLMJavaPython架构设计Agent程序员实现财富自由
《程序员创业公司的技术栈选择与性能优化》概述本文旨在探讨程序员创业公司在选择技术栈和进行性能优化方面的策略与实践。随着技术的不断进步和市场的快速变化,技术栈的选择和优化成为创业公司成功的关键因素。正确的技术栈选择不仅能够提升系统的性能和可扩展性,还能降低开发成本和维护难度。关键词技术栈选择性能优化创业公司云计算数据库微服务人工智能区块链边缘计算摘要本文首先分析了技术栈选择的重要性以及创业公司在技术
- AI人工智能深度学习算法:高并发场景下深度学习代理的性能调优
AI天才研究院
计算AI大模型企业级应用开发实战ChatGPT计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
1.背景介绍1.1深度学习代理的兴起近年来,随着人工智能技术的飞速发展,深度学习在各个领域都取得了显著的成果。特别是在自然语言处理、图像识别、语音识别等领域,深度学习模型的性能已经超越了传统方法。为了更好地将深度学习技术应用于实际场景,深度学习代理应运而生。深度学习代理是一种将深度学习模型封装起来,并提供对外接口的服务。它可以接收来自客户端的请求,将请求数据输入到深度学习模型中进行推理,并将推理结
- AI生成PPT:智能技术重塑演示文稿创作的新篇章
mhjidfoi
人工智能
在快节奏的商业与学术环境中,演示文稿(PPT)作为信息传递与观点展示的重要工具,其质量与效率直接关系到演讲者的说服力和观众的接收度。近年来,随着人工智能(AI)技术的飞速发展,AI生成PPT的应用正逐渐从科幻概念转变为现实工具,为演示文稿的创作带来了革命性的变革。本文将深入探讨AI生成PPT的工作原理、优势、挑战以及未来展望,为您揭示这一智能技术的无限潜力。一、AI生成PPT的工作原理AI生成PP
- 零门槛一键生成PPT,利用人工智能快速提高办公效率(无需第三方插件)
beautycountry88
powerpoint人工智能
人工智能技术的发展正以惊人的速度改变着我们的世界,今天给大家介绍下利用ChatGPT快速生成PPT的方法,它能够帮助你一键生成PPT内容和漂亮的PPT文档,无需繁琐的设计和排版,只需要与ChatGPT交流,你就能轻松拥有一份令人赞叹的演示文稿。什么是ChatGPT?它是基于人工智能技术的语言模型,能够理解和生成自然语言。与传统的PPT制作方式不同,ChatGPT通过与你进行对话,理解你的需求和要点
- 探索AloT(人工智能物联网):未来智能设备的核心驱动力
为也科技
人工智能物联网边缘计算目标检测iot
探索AloT(人工智能物联网):未来智能设备的核心驱动力随着物联网(IoT)技术的飞速发展,人工智能(AI)也在各行各业中找到了应用的空间。两者的结合,诞生了一个崭新的技术领域——AloT(ArtificialIntelligenceofThings,人工智能物联网)。AloT不仅仅是AI与物联网技术的简单融合,它更是推动智能设备进化和物联网产业向更高层次发展的关键力量。今天,我们就来深入探讨Al
- Python中实现多层感知机(MLP)的深度学习模型
Echo_Wish
Python笔记从零开始学Python人工智能python深度学习开发语言
深度学习已经成为机器学习领域的一个热门话题,而多层感知机(MLP)是最基础的深度学习模型之一。在这篇教程中,我将向你展示如何使用Python来实现一个简单的MLP模型。什么是多层感知机(MLP)?多层感知机(MLP)是一种前馈神经网络,它包含一个输入层、一个或多个隐藏层以及一个输出层。每个层都由一系列的神经元组成,神经元之间通过权重连接。MLP能够学习输入数据的非线性特征,因此在复杂问题的建模中非
- 深度学习-92-大语言模型LLM之基于langchain的模型IO的模型调用
皮皮冰燃
深度学习深度学习语言模型langchain
文章目录1Model的输入输出2langchain支持的模型3调用Ollama模型3.1设置环境变量3.2大语言模型LLM(OllamaLLM)3.2.1生成文本补全3.2.2流式生成文本补全3.3聊天模型(ChatOllama)3.3.1内置的消息类型3.3.2HumanMessage和SystemMessage3.3.3元组方式构成消息列表3.3.4stream流式3.4文本嵌入模型(Olla
- 深度学习基础18(多层感知机代码实现)
NDNPOMDFLR
深度学习深度学习python经验分享人工智能神经网络
多层感知机的从零开始实现现在自己实现一个多层感知机。为了与之前softmax回归获得的结果进行比较,将继续使用Fashion-MNIST图像分类数据集importtorchfromtorchimportnnfromd2limporttorchasd2lbatch_size=256train_iter,test_iter=d2l.load_data_fashion_mnist(batch_size)
- mybatis学习(7/134)
一缕叶
学习
简单了解了一下maven,https://chatgpt.com/share/678bb629-bb4c-800c-8f3b-a41d298e5467,xml还是比较方便的,对于部署或者打包之类的,只需要配置对应的代码,idea会自动到对应的中央库中下载,还可以从国内的镜像去下载,mybatis需要配置对应的mysql-connetion-java,但是版本不要需要与sql的版本相同,我今天以为需
- 人工智能与量子计算:未来编程的碰撞与共鸣
大梦百万秋
知识学爆量子计算
引言:编程的“摩尔定律”快到尽头了?曾几何时,摩尔定律曾预言着计算能力的飞速发展——每两年,晶体管的数量翻倍,处理器的速度也在跟着疯狂增长。这个定律引领了数十年的技术革命,推动了今天的智能手机、超级计算机和现代互联网的诞生。然而,摩尔定律的黄金时代正逐渐走向尾声。传统的硅基芯片工艺遇到了物理极限,无法再轻易实现持续的性能翻倍。此时,新的计算范式开始崭露头角——量子计算与人工智能(AI)的结合,正在
- AI Agent:深度解析与未来展望
码事漫谈
c++人工智能
一、AIAgent的前世:从概念到萌芽(一)早期探索AIAgent的概念可以追溯到20世纪50年代,早期的AI研究主要集中在简单的规则系统上,这些系统的行为是确定性的,输出由输入决定。随着时间的推移,AI逐渐能够处理不确定性,1990年代机器学习的兴起为AIAgent的发展奠定了基础,神经网络技术的突破为深度学习的发展提供了可能。(二)技术突破2017年后,大语言模型(LLM)的出现推动了AIAg
- 【深度学习基础】线性神经网络 | softmax回归的简洁实现
Francek Chen
PyTorch深度学习深度学习神经网络回归softmax人工智能
【作者主页】FrancekChen【专栏介绍】⌈⌈⌈PyTorch深度学习⌋⌋⌋深度学习(DL,DeepLearning)特指基于深层神经网络模型和方法的机器学习。它是在统计机器学习、人工神经网络等算法模型基础上,结合当代大数据和大算力的发展而发展出来的。深度学习最重要的技术特征是具有自动提取特征的能力。神经网络算法、算力和数据是开展深度学习的三要素。深度学习在计算机视觉、自然语言处理、多模态数据
- 【人工智能】Python常用库-Keras:高阶深度学习 API
IT古董
深度学习人工智能Python人工智能python深度学习
Keras:高阶深度学习APIKeras是一个高效、用户友好的深度学习框架,作为TensorFlow的高级API,支持快速构建和训练深度学习模型。它以模块化、简单和灵活著称,适合研究和生产环境。Keras的发音为[ˈkerəs],类似于“凯拉斯”或“克拉斯”。这个名字来源于希腊语κέρας(kéras),意思是“角”或“角质物”。这个词与深度学习的灵感来源——大脑的神经网络结构有一定联系。Kera
- 深度求索DeepSeek V2.5-1210发布:AI代码生成器迎来全新升级
2401_89759264
人工智能前端
深度学习技术日新月异,而强大的AI代码生成器也随之不断进化。今天,我们将聚焦于深度求索团队发布的DeepSeekV2.5-1210版本,这款标志着DeepSeekV2系列收官之作,为我们带来了令人惊喜的Post-Training能力提升和备受期待的联网搜索功能。这篇文章将深入探讨DeepSeekV2.5-1210的各项改进,以及其开源带来的深远影响。DeepSeekV2系列的研发历程与V2.5-1
- 南京大学苏州校区学生代表团到访合合信息,开启“沉浸式”人工智能企业行
人工智能图像识别程序员
为进一步深化校企合作,探索产业科技拔尖创新人才培养新模式,近期,南京大学苏州校区师生代表到访上海合合信息科技股份有限公司(以下简称“合合信息”,股票代码:SH688615)。此次活动设置了展厅讲解、技术交流、模拟面试等多个体验环节,旨在增强学生对人工智能及商业大数据技术在实际应用中的理解和认识,引导学生系统性开展职业规划,提升职业胜任力。图说:南京大学苏州校区学生代表团到访合合信息合影留念合合信息
- 深度学习从入门到精通:全面指南
AI天才研究院
计算大数据AI人工智能AI大模型企业级应用开发实战javapythonjavascriptkotlingolang架构人工智能大厂程序员硅基计算碳基计算认知计算生物计算深度学习神经网络大数据AIGCAGILLM系统架构设计软件哲学Agent程序员实现财富自由
《深度学习从入门到精通:全面指南》文章目录《深度学习从入门到精通:全面指南》文章关键词文章摘要引言第一部分:深度学习基础入门第1章:深度学习概述1.1深度学习的基本概念1.2深度学习的发展历程1.3深度学习的基本原理神经网络前向传播反向传播第2章:深度学习框架入门2.1TensorFlow入门TensorFlow环境搭建TensorFlow基本数据结构2.2PyTorch入门PyTorch环境搭建
- 反转字符串中的单词 II:Swift 实现与详解
网罗开发
Swiftvue.js
网罗开发(小红书、快手、视频号同名) 大家好,我是展菲,目前在上市企业从事人工智能项目研发管理工作,平时热衷于分享各种编程领域的软硬技能知识以及前沿技术,包括iOS、前端、HarmonyOS、Java、Python等方向。在移动端开发、鸿蒙开发、物联网、嵌入式、云原生、开源等领域有深厚造诣。图书作者:《ESP32-C3物联网工程开发实战》图书作者:《SwiftUI入门,进阶与实战》超级个体:CO
- AIGC视频生成模型:Meta的Emu Video模型
好评笔记
#MetaAIGC-视频AIGC机器学习人工智能transformer论文阅读深度学习面试
大家好,这里是好评笔记,公主号:Goodnote,专栏文章私信限时Free。本文详细介绍Meta的视频生成模型EmuVideo,作为Meta发布的第二款视频生成模型,在视频生成领域发挥关键作用。优质专栏回顾:机器学习笔记深度学习笔记多模态论文笔记AIGC—图像文章目录论文摘要引言相关工作文本到图像(T2I)扩散模型视频生成/预测文本到视频(T2V)生成分解生成方法预备知识EmuVideo生成步骤图
- 【Python】已解决ModuleNotFoundError: No module named ‘tensorflow‘
屿小夏
pythontensorflowneo4j
个人简介:某不知名博主,致力于全栈领域的优质博客分享|用最优质的内容带来最舒适的阅读体验!文末获取免费IT学习资料!文末获取更多信息精彩专栏推荐订阅收藏专栏系列直达链接相关介绍书籍分享点我跳转书籍作为获取知识的重要途径,对于IT从业者来说更是不可或缺的资源。不定期更新IT图书,并在评论区抽取随机粉丝,书籍免费包邮到家AI前沿点我跳转探讨人工智能技术领域的最新发展和创新,涵盖机器学习、深度学习、自然
- 实时离线AI字幕生成与翻译功能在智能眼镜上的应用展望
花生糖@
AIGC学习资料库VLC播放器AIAIGC方案技术AI眼镜
随着人工智能(AI)技术的不断进步,实时字幕生成和翻译功能正逐渐从传统的云服务走向本地设备,为用户提供了更为便捷、私密且广泛适用的服务。特别地,当这些先进的AI能力被集成到诸如智能眼镜这样的穿戴式设备中时,它们可以极大地改善用户体验,并开拓一系列全新的应用场景。技术框架概述VLC播放器近期推出的基于AI的实时字幕生成和翻译功能,标志着一个重要的里程碑。这项创新不仅限于视频播放器内部,而是为整个智能
- 【Python】已解决:ModuleNotFoundError: No module named ‘tensorflow‘
屿小夏
pythontensorflowneo4j
个人简介:某不知名博主,致力于全栈领域的优质博客分享|用最优质的内容带来最舒适的阅读体验!文末获取免费IT学习资料!文末获取更多信息精彩专栏推荐订阅收藏专栏系列直达链接相关介绍书籍分享点我跳转书籍作为获取知识的重要途径,对于IT从业者来说更是不可或缺的资源。不定期更新IT图书,并在评论区抽取随机粉丝,书籍免费包邮到家AI前沿点我跳转探讨人工智能技术领域的最新发展和创新,涵盖机器学习、深度学习、自然
- 一文洞悉AI技术架构:大模型、智能体与应用场景
大模型玩家
人工智能架构数据库深度学习pytorchtransformerai
人工智能(AI)的发展,正以前所未有的速度重塑我们的世界。从能与人对话的大语言模型到自动驾驶、精准医疗,AI的背后究竟隐藏着怎样的技术奥秘?本篇文章将为您深度剖析一套先进的AI技术架构,从基础设施到应用层,每一层都充满了惊喜和启发。读完本文,您不仅能看懂AI的底层逻辑,还能掌握其对各行业变革的潜力与方向。一、基础设施层:AI技术的坚实地基基础设施层是AI技术架构的“地基”,为整个系统提供计算能力和
- Java序列化进阶篇
g21121
java序列化
1.transient
类一旦实现了Serializable 接口即被声明为可序列化,然而某些情况下并不是所有的属性都需要序列化,想要人为的去阻止这些属性被序列化,就需要用到transient 关键字。
- escape()、encodeURI()、encodeURIComponent()区别详解
aigo
JavaScriptWeb
原文:http://blog.sina.com.cn/s/blog_4586764e0101khi0.html
JavaScript中有三个可以对字符串编码的函数,分别是: escape,encodeURI,encodeURIComponent,相应3个解码函数:,decodeURI,decodeURIComponent 。
下面简单介绍一下它们的区别
1 escape()函
- ArcgisEngine实现对地图的放大、缩小和平移
Cb123456
添加矢量数据对地图的放大、缩小和平移Engine
ArcgisEngine实现对地图的放大、缩小和平移:
个人觉得是平移,不过网上的都是漫游,通俗的说就是把一个地图对象从一边拉到另一边而已。就看人说话吧.
具体实现:
一、引入命名空间
using ESRI.ArcGIS.Geometry;
using ESRI.ArcGIS.Controls;
二、代码实现.
- Java集合框架概述
天子之骄
Java集合框架概述
集合框架
集合框架可以理解为一个容器,该容器主要指映射(map)、集合(set)、数组(array)和列表(list)等抽象数据结构。
从本质上来说,Java集合框架的主要组成是用来操作对象的接口。不同接口描述不同的数据类型。
简单介绍:
Collection接口是最基本的接口,它定义了List和Set,List又定义了LinkLi
- 旗正4.0页面跳转传值问题
何必如此
javajsp
跳转和成功提示
a) 成功字段非空forward
成功字段非空forward,不会弹出成功字段,为jsp转发,页面能超链接传值,传输变量时需要拼接。接拼接方式list.jsp?test="+strweightUnit+"或list.jsp?test="+weightUnit+&qu
- 全网唯一:移动互联网服务器端开发课程
cocos2d-x小菜
web开发移动开发移动端开发移动互联程序员
移动互联网时代来了! App市场爆发式增长为Web开发程序员带来新一轮机遇,近两年新增创业者,几乎全部选择了移动互联网项目!传统互联网企业中超过98%的门户网站已经或者正在从单一的网站入口转向PC、手机、Pad、智能电视等多端全平台兼容体系。据统计,AppStore中超过85%的App项目都选择了PHP作为后端程
- Log4J通用配置|注意问题 笔记
7454103
DAOapachetomcatlog4jWeb
关于日志的等级 那些去 百度就知道了!
这几天 要搭个新框架 配置了 日志 记下来 !做个备忘!
#这里定义能显示到的最低级别,若定义到INFO级别,则看不到DEBUG级别的信息了~!
log4j.rootLogger=INFO,allLog
# DAO层 log记录到dao.log 控制台 和 总日志文件
log4j.logger.DAO=INFO,dao,C
- SQLServer TCP/IP 连接失败问题 ---SQL Server Configuration Manager
darkranger
sqlcwindowsSQL ServerXP
当你安装完之后,连接数据库的时候可能会发现你的TCP/IP 没有启动..
发现需要启动客户端协议 : TCP/IP
需要打开 SQL Server Configuration Manager...
却发现无法打开 SQL Server Configuration Manager..??
解决方法: C:\WINDOWS\system32目录搜索framedyn.
- [置顶] 做有中国特色的程序员
aijuans
程序员
从出版业说起 网络作品排到靠前的,都不会太难看,一般人不爱看某部作品也是因为不喜欢这个类型,而此人也不会全不喜欢这些网络作品。究其原因,是因为网络作品都是让人先白看的,看的好了才出了头。而纸质作品就不一定了,排行榜靠前的,有好作品,也有垃圾。 许多大牛都是写了博客,后来出了书。这些书也都不次,可能有人让为不好,是因为技术书不像小说,小说在读故事,技术书是在学知识或温习知识,有些技术书读得可
- document.domain 跨域问题
avords
document
document.domain用来得到当前网页的域名。比如在地址栏里输入:javascript:alert(document.domain); //www.315ta.com我们也可以给document.domain属性赋值,不过是有限制的,你只能赋成当前的域名或者基础域名。比如:javascript:alert(document.domain = "315ta.com");
- 关于管理软件的一些思考
houxinyou
管理
工作好多看年了,一直在做管理软件,不知道是我最开始做的时候产生了一些惯性的思维,还是现在接触的管理软件水平有所下降.换过好多年公司,越来越感觉现在的管理软件做的越来越乱.
在我看来,管理软件不论是以前的结构化编程,还是现在的面向对象编程,不管是CS模式,还是BS模式.模块的划分是很重要的.当然,模块的划分有很多种方式.我只是以我自己的划分方式来说一下.
做为管理软件,就像现在讲究MVC这
- NoSQL数据库之Redis数据库管理(String类型和hash类型)
bijian1013
redis数据库NoSQL
一.Redis的数据类型
1.String类型及操作
String是最简单的类型,一个key对应一个value,string类型是二进制安全的。Redis的string可以包含任何数据,比如jpg图片或者序列化的对象。
Set方法:设置key对应的值为string类型的value
- Tomcat 一些技巧
征客丶
javatomcatdos
以下操作都是在windows 环境下
一、Tomcat 启动时配置 JAVA_HOME
在 tomcat 安装目录,bin 文件夹下的 catalina.bat 或 setclasspath.bat 中添加
set JAVA_HOME=JAVA 安装目录
set JRE_HOME=JAVA 安装目录/jre
即可;
二、查看Tomcat 版本
在 tomcat 安装目
- 【Spark七十二】Spark的日志配置
bit1129
spark
在测试Spark Streaming时,大量的日志显示到控制台,影响了Spark Streaming程序代码的输出结果的查看(代码中通过println将输出打印到控制台上),可以通过修改Spark的日志配置的方式,不让Spark Streaming把它的日志显示在console
在Spark的conf目录下,把log4j.properties.template修改为log4j.p
- Haskell版冒泡排序
bookjovi
冒泡排序haskell
面试的时候问的比较多的算法题要么是binary search,要么是冒泡排序,真的不想用写C写冒泡排序了,贴上个Haskell版的,思维简单,代码简单,下次谁要是再要我用C写冒泡排序,直接上个haskell版的,让他自己去理解吧。
sort [] = []
sort [x] = [x]
sort (x:x1:xs)
| x>x1 = x1:so
- java 路径 配置文件读取
bro_feng
java
这几天做一个项目,关于路径做如下笔记,有需要供参考。
取工程内的文件,一般都要用相对路径,这个自然不用多说。
在src统计目录建配置文件目录res,在res中放入配置文件。
读取文件使用方式:
1. MyTest.class.getResourceAsStream("/res/xx.properties")
2. properties.load(MyTest.
- 读《研磨设计模式》-代码笔记-简单工厂模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
package design.pattern;
/*
* 个人理解:简单工厂模式就是IOC;
* 客户端要用到某一对象,本来是由客户创建的,现在改成由工厂创建,客户直接取就好了
*/
interface IProduct {
- SVN与JIRA的关联
chenyu19891124
SVN
SVN与JIRA的关联一直都没能装成功,今天凝聚心思花了一天时间整合好了。下面是自己整理的步骤:
一、搭建好SVN环境,尤其是要把SVN的服务注册成系统服务
二、装好JIRA,自己用是jira-4.3.4破解版
三、下载SVN与JIRA的插件并解压,然后拷贝插件包下lib包里的三个jar,放到Atlassian\JIRA 4.3.4\atlassian-jira\WEB-INF\lib下,再
- JWFDv0.96 最新设计思路
comsci
数据结构算法工作企业应用公告
随着工作流技术的发展,工作流产品的应用范围也不断的在扩展,开始进入了像金融行业(我已经看到国有四大商业银行的工作流产品招标公告了),实时生产控制和其它比较重要的工程领域,而
- vi 保存复制内容格式粘贴
daizj
vi粘贴复制保存原格式不变形
vi是linux中非常好用的文本编辑工具,功能强大无比,但对于复制带有缩进格式的内容时,粘贴的时候内容错位很严重,不会按照复制时的格式排版,vi能不能在粘贴时,按复制进的格式进行粘贴呢? 答案是肯定的,vi有一个很强大的命令可以实现此功能 。
在命令模式输入:set paste,则进入paste模式,这样再进行粘贴时
- shell脚本运行时报错误:/bin/bash^M: bad interpreter 的解决办法
dongwei_6688
shell脚本
出现原因:windows上写的脚本,直接拷贝到linux系统上运行由于格式不兼容导致
解决办法:
1. 比如文件名为myshell.sh,vim myshell.sh
2. 执行vim中的命令 : set ff?查看文件格式,如果显示fileformat=dos,证明文件格式有问题
3. 执行vim中的命令 :set fileformat=unix 将文件格式改过来就可以了,然后:w
- 高一上学期难记忆单词
dcj3sjt126com
wordenglish
honest 诚实的;正直的
argue 争论
classical 古典的
hammer 锤子
share 分享;共有
sorrow 悲哀;悲痛
adventure 冒险
error 错误;差错
closet 壁橱;储藏室
pronounce 发音;宣告
repeat 重做;重复
majority 大多数;大半
native 本国的,本地的,本国
- hibernate查询返回DTO对象,DTO封装了多个pojo对象的属性
frankco
POJOhibernate查询DTO
DTO-数据传输对象;pojo-最纯粹的java对象与数据库中的表一一对应。
简单讲:DTO起到业务数据的传递作用,pojo则与持久层数据库打交道。
有时候我们需要查询返回DTO对象,因为DTO
- Partition List
hcx2013
partition
Given a linked list and a value x, partition it such that all nodes less than x come before nodes greater than or equal to x.
You should preserve the original relative order of th
- Spring MVC测试框架详解——客户端测试
jinnianshilongnian
上一篇《Spring MVC测试框架详解——服务端测试》已经介绍了服务端测试,接下来再看看如果测试Rest客户端,对于客户端测试以前经常使用的方法是启动一个内嵌的jetty/tomcat容器,然后发送真实的请求到相应的控制器;这种方式的缺点就是速度慢;自Spring 3.2开始提供了对RestTemplate的模拟服务器测试方式,也就是说使用RestTemplate测试时无须启动服务器,而是模拟一
- 关于推荐个人观点
liyonghui160com
推荐系统关于推荐个人观点
回想起来,我也做推荐了3年多了,最近公司做了调整招聘了很多算法工程师,以为需要多么高大上的算法才能搭建起来的,从实践中走过来,我只想说【不是这样的】
第一次接触推荐系统是在四年前入职的时候,那时候,机器学习和大数据都是没有的概念,什么大数据处理开源软件根本不存在,我们用多台计算机web程序记录用户行为,用.net的w
- 不间断旋转的动画
pangyulei
动画
CABasicAnimation* rotationAnimation;
rotationAnimation = [CABasicAnimation animationWithKeyPath:@"transform.rotation.z"];
rotationAnimation.toValue = [NSNumber numberWithFloat: M
- 自定义annotation
sha1064616837
javaenumannotationreflect
对象有的属性在页面上可编辑,有的属性在页面只可读,以前都是我们在页面上写死的,时间一久有时候会混乱,此处通过自定义annotation在类属性中定义。越来越发现Java的Annotation真心很强大,可以帮我们省去很多代码,让代码看上去简洁。
下面这个例子 主要用到了
1.自定义annotation:@interface,以及几个配合着自定义注解使用的几个注解
2.简单的反射
3.枚举
- Spring 源码
up2pu
spring
1.Spring源代码
https://github.com/SpringSource/spring-framework/branches/3.2.x
注:兼容svn检出
2.运行脚本
import-into-eclipse.bat
注:需要设置JAVA_HOME为jdk 1.7
build.gradle
compileJava {
sourceCompatibilit
- 利用word分词来计算文本相似度
yangshangchuan
wordword分词文本相似度余弦相似度简单共有词
word分词提供了多种文本相似度计算方式:
方式一:余弦相似度,通过计算两个向量的夹角余弦值来评估他们的相似度
实现类:org.apdplat.word.analysis.CosineTextSimilarity
用法如下:
String text1 = "我爱购物";
String text2 = "我爱读书";
String text3 =