- 用于网络安全的生成式 AI:利用 AI 增强威胁检测和响应
云上笛暮
AIforSecurity人工智能
一、引言技术的进步彻底改变了我们的生活、工作和交流方式。然而,随着这些技术的进步,保护它们免受网络威胁的挑战也随之而来。网络安全已成为任何组织的重要组成部分,随着网络攻击越来越复杂,传统的威胁检测和响应方法已不再足够。这导致了生成人工智能等新技术的发展,这些技术在增强网络安全方面显示出巨大潜力。在这篇博客中,我们将探讨生成式人工智能的概念、它在网络安全中的重要性,以及它如何用于增强威胁检测和响应。
- 【TVM 教程】使用元组输入(Tuple Inputs)进行计算和归约
编译器编程后端人工智能深度学习
ApacheTVM是一个端到端的深度学习编译框架,适用于CPU、GPU和各种机器学习加速芯片。更多TVM中文文档可访问→https://tvm.hyper.ai/作者:ZihengJiang若要在单个循环中计算具有相同shape的多个输出,或执行多个值的归约,例如argmax。这些问题可以通过元组输入来解决。本教程介绍了TVM中元组输入的用法。from__future__importabsolut
- 深度解构:DeepSeek大模型架构与前沿应用的未来探秘
威哥说编程
架构ai
随着人工智能(AI)领域的快速发展,深度学习模型逐渐向着更加复杂和强大的方向演进。在这一波技术浪潮中,DeepSeek大模型作为一个重要代表,凭借其卓越的表现和广泛的应用,正在重新定义我们对AI的认知和期待。本篇文章将从架构到应用,全面解析DeepSeek大模型的技术特点,探索其在未来可能带来的创新与变革。1.DeepSeek大模型的架构设计DeepSeek大模型采用的是基于Transformer
- T31ZL 君正SOC芯片 应用于移动摄像机、安全监控、视频通话和视频分析等领域 提供软硬件资料+样品测试
li15817260414
君正音视频智能路由器信号处理信息与通信
核心计算架构T31ZL搭载XBurst®-1双发射RISC-V核心,采用9级流水线微架构设计,主频稳定运行于1.5GHz14。处理器集成32KB指令缓存与32KB数据缓存构成一级缓存体系,搭配128KB二级统一缓存,有效提升指令吞吐效率26。硬件加速单元包含IEEE754兼容的浮点运算器,支持单/双精度浮点运算,实测SPECint2000基准测试成绩达2.4DMIPS/MHz5。指令集扩展芯片引入
- T41LQ专为人工智能物联网(AIoT)应用设计,适用于智能安防、智能家居、机器视觉等领域 软硬件资料+样品测试
li15817260414
君正人工智能物联网智能家居
君正(Ingenic)T系列芯片涵盖多个型号,每个型号根据不同应用需求提供了多个版本。以下是各型号及其主要版本:1.T23系列:T23N:标准版,适用于移动摄像机、安全监控、视频通话和视频分析等应用。T23ZN:佐罗标准版,功能与T23N类似,针对特定市场需求进行了优化。2.T31系列:T31L:简化版,适用于对成本和功耗有严格要求的应用场景。T31N:标准版,适用于广泛的智能视频应用。T31X:
- T31ZX T31ZL 北京君正T31电池特别版 SOC芯片
HXW-lin0312
人工智能单片机
T31针对市场不同需求,T31分为以下版本,T31正常(标准版,简称T31N),T31Lite(简,简称T31L),T31eXtra(增强版,T31X),T31AI(AI版,简称T31A),T31ZL,T31ZX。T31N为普通版,配备全功能,内含512MbitDDR2,在充分发挥T31的各种能力同时,更可提供极高算力,实现高性价比.T31N标配SIMD128加速指令及1.5Ghz主频,由此T31
- 人工智能生成内容(AIGC)对程序员的影响
AmHardy
AIGC人工智能AIGC程序员chatgptkimi
人工智能生成内容(AIGC)对程序员的影响引言AIGC技术正在深刻影响软件开发行业,给程序员带来诸多机遇和挑战。程序员不仅需要适应这些新兴技术,还要有效利用它们来提升自己的工作效率和创新能力。AIGC技术的优势效率提升代码生成:AI工具如GitHubCopilot可以预测代码片段、自动完成代码和生成文档,从而显著提升编程效率。自动化测试:AI可以自动生成测试用例和检测代码中的潜在问题,减少了手动测
- 君正SOC芯片 T31X智能视频应用处理器 高集成度 超低功耗 提供软硬件资料+样品测试
li15817260414
君正音视频嵌入式硬件信息与通信
君正(Ingenic)T31X是一款面向智能视频应用的高性能、低功耗处理器,适用于安防监控、智能家居和物联网等领域。以下是其主要技术参数:1.处理器(CPU):架构:XBurst®-1内核主频:最高可达1.5GHz浮点运算:支持IEEE754兼容的单精度和双精度浮点运算2.内存:集成内存:512Mb或1GbDDR2内存3.视频处理:编码格式:支持H.264、H.265(HEVC)和MJPEG最大分
- T31ZX 智能视频应用处理器 君正SOC芯片 支持流畅的2048x2048分辨率视频录制 提供SDK资料+样品测试
li15817260414
君正音视频智能路由器智能家居
君正(Ingenic)T31ZX是一款智能视频应用处理器,适用于移动摄像头、安全监控、视频通话和视频分析等领域。以下是关于T31ZX的详细参数资料:1.处理器(CPU):架构:XBurst®处理器引擎主频:最高可达1.5GHz缓存:32KB指令缓存、32KB数据缓存(L1),128KB二级缓存(L2)浮点运算:兼容IEEE754的硬件浮点单元2.视频编码器:支持格式:H.264、H.265(HEV
- 【路径规划】基于A算法和Dijkstra算法的路径规划附Python代码
天天Matlab科研工作室
无人机matlab仿真电子资源算法python开发语言
✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。往期回顾关注个人主页:Matlab科研工作室个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。内容介绍路径规划作为人工智能和机器人技术领域的核心问题之一,在导航、交通运输、游戏开发等领域有着广泛的应用。解决路径规划问题,旨在找到一条从起始点到目标点,并满足特定约束条件(如最短
- 【AI】如何理解与应对AI中的敏感话题:详细分析与实用指南
丶2136
AI人工智能AI敏感话题
引言随着人工智能(AI)技术的不断发展,我们在与AI交互时,可能会遇到敏感话题的讨论限制。在许多情况下,AI系统为了避免触及社会、政治或文化敏感点,会对用户输入进行一定的筛选和过滤。那么,这些敏感话题是如何定义的,AI如何识别并避免这些话题,以及作为开发者和用户,我们该如何应对这一问题?本文将详细探讨这些问题,并通过表格、图示等方式帮助大家更好地理解。目录引言一、AI中的敏感话题分类与处理策略1.
- 智能算法安全优化与关键技术实践
智能计算研究中心
其他
内容概要智能算法的安全优化与关键技术实践已成为人工智能发展的核心命题。在医疗影像分析、金融风控、自动驾驶等场景中,联邦学习的分布式协作机制有效解决了数据孤岛问题,而生成对抗网络通过对抗训练增强数据生成能力,为小样本场景提供技术支撑。与此同时,可解释性算法通过特征重要性分析与决策路径可视化,显著提升模型透明度,降低黑箱风险。在技术实现层面,特征工程的自动化筛选与超参数动态调整策略优化了模型性能,结合
- 开源跨平台大模型工具Ollama的安全隐患
X.Cristiano
AI新闻Ollama漏洞大模型
源跨平台大模型工具Ollama的安全隐患及应对策略在当今数字化飞速发展的时代,人工智能技术尤其是大模型的应用已经渗透到我们生活的方方面面。从智能家居到医疗健康,从金融风控到教育娱乐,大模型为各个领域带来了前所未有的便利和创新。然而,随着技术的进步,安全问题也日益凸显。近期,清华大学网络空间测绘联合研究中心发布了一则关于开源跨平台大模型工具Ollama的安全通报,揭示了其默认配置中存在的严重安全隐患
- 第0节 机器学习与深度学习介绍
汉堡go
李哥深度学习专栏人工智能机器学习神经网络
人工智能:能够感知、推理、行动和适应的程序机器学习:能够随着数据量的增加而不断改进性能的算法(数学上的可解释性但准确率不是百分百,灵活度不高)深度学习:机器学习的一个子集:利用多层神经网络从大量数据中进行学习(设计一个很深的网络架构让机器自己学)(深度学习就是找一个函数f)机器学习算法简介(狭义)一般是基于数学,或者统计学的方法,具有很强的可解释性经典传统机器学习算法:KNN、决策树、朴素贝叶斯一
- Python常见的第三方库:requests、numpy、pandas
大数据张老师
pythonnumpypandas
常见的第三方库:requests、numpy、pandasPython拥有丰富的第三方库,涵盖了数据分析、网络爬取、人工智能、科学计算等多个领域。其中,requests、numpy和pandas是最常用的三个库,分别用于网络请求、数值计算和数据处理。本节将详细介绍它们的基本功能,并通过示例代码帮助理解它们的使用方法。requests:处理网络请求的库requests是Python中用于处理HTTP
- 【AI】YOLOv7部署在NVIDIA Jetson Nano上
郭老二
AI人工智能YOLO
1、环境搭建参考博客:【AI】JetsonNano烧写SD卡镜像【AI】YOLOv7部署在NVIDIAJetsonTX2上2、下载编译2.1源码下载https://github.com/AlexeyAB/darknet2.2编译1)修改MakefileGPU=1CUDNN=1CUDNN_HALF=0
- 人工智能与深度学习的应用案例解析及代码实现
accurater
人工智能深度学习科技机器人
引言人工智能(AI)与深度学习(DeepLearning)作为21世纪最具变革性的技术之一,已渗透到医疗、金融、交通、制造等各个领域。深度学习通过多层神经网络模拟人类认知过程,显著提升了复杂任务的自动化水平。本文将从技术原理、核心应用案例及代码实现三个维度,系统解析其实际应用,并探讨未来挑战与发展方向。一、深度学习技术概述1.1核心技术框架深度学习基于深度神经网络(DNN),其核心在于通过多层非线
- 人工智能之数学基础:对线性代数中逆矩阵的思考?
每天五分钟玩转人工智能
机器学习深度学习之数学基础线性代数人工智能矩阵机器学习逆矩阵向量
本文重点逆矩阵是线性代数中的一个重要概念,它在线性方程组、矩阵方程、动态系统、密码学、经济学和金融学以及计算机图形学等领域都有广泛的应用。通过了解逆矩阵的定义、性质、计算方法和应用,我们可以更好地理解和应用线性代数知识,解决各种实际问题。关于逆矩阵的思考现在我们有一个计算过程如上所示,我们知道矩阵的作用就是函数,向量a先经过矩阵1进行函数作用,然后再经过矩阵2函数作用最后可以得到输出向量c,这个过
- 上线DeepSeek大模型,黄山“大位”智算中心正式点亮
人工智能
2月28日,智启黄山,算领未来——黄山“大位”智算中心点亮仪式在黄山市大位人工智能计算中心举行,标志着黄山“大位”智算中心正式投入运营。同日,DeepSeek-R1大模型在黄山“大位”正式上线,通过“顶尖大模型+普惠算力底座”的深度融合,构建黄山市人工智能创新生态。黄山市委常委、副市长王恒来出席并致辞。他表示,黄山“大位”智算中心的点亮,是黄山市贯彻落实习近平总书记关于"人工智能是引领这一轮科技革
- DeepSeek大模型如何提升论文与代码效率
智能计算研究中心
其他
内容概要DeepSeek大模型作为人工智能领域的前沿成果,通过670亿参数的混合专家架构(Mixture-of-Experts,MoE),在多模态任务处理与专业场景应用中展现了显著优势。其核心技术突破体现在多语言处理能力、视觉语言理解模块以及深度优化的自然语言处理算法上,能够覆盖学术研究、代码开发、内容创作等多元场景。例如,在论文写作领域,模型通过智能选题推荐、文献综述生成及SEO关键词拓展功能,
- Manus学习手册合集【建议收藏】
周师姐
学习pdf人工智能
这两天,一款通用AI智能体Manus还没发布就火了,因为还在内测中,用户需要邀请码才能够体验,这就导致原本免费的邀请码在二手平台最高被炒到8万8。相比于之前爆火的DeepSeek和ChatGPT这类AI对话工具,Manus是全球首款真正意义上的通用人工智能!没错,就是科幻电影里面能够独立思考,自主运行的人工智能!!manus学习资料:https://pan.xunlei.com/s/VOKk8Cq
- 10个热门AI API(2024年2月)
程序员后端
人工智能(AI)在当今数字时代发挥着重要的作用,为企业带来了全新的机遇和变革。AI不再是一种陌生的科技概念,而是已经渗透到各行各业,成为推动创新和提升效率的关键引擎。其核心优势在于能够处理大规模的数据、执行复杂的任务、模拟人类思维过程,并以前所未有的方式改善业务流程。AIAPI作为连接企业和强大AI技术的桥梁,扮演着至关重要的角色。通过使用AIAPI,企业能够快速、轻松地将先进的人工智能功能集成到
- 人工智能学习大纲
互联网搬砖老肖
AI原力计划工具使用人工智能学习
前言人工智能正以惊人的速度发展,其潜力既令人兴奋,也引人深思。它既可能为解决全球性问题带来希望,也可能带来前所未有的挑战。人工智能时代的到来已是不可逆转的趋势,科幻电影中的某些场景或许将成为现实。我对人工智能的研究越深入,就越能感受到它的强大力量。我所担忧的不仅仅是它对就业市场的冲击,更是它可能对人类社会结构带来的深远影响。未来,对人工智能的理解可能像今天对电脑操作的掌握一样重要。掌握人工智能技术
- Manus AI:全球首款通用型 AI Agent 的创新与挑战
萧鼎
python基础到进阶教程人工智能
1.引言:AIAgent时代的到来人工智能正在从单纯的对话式助手进化为更高级的智能体(Agent),能够自主完成任务,而不仅仅是提供信息或建议。2025年3月6日,由中国团队Monica推出的ManusAI正式亮相,号称全球首款通用型AIAgent(自主智能体)。与传统的AI助手相比,Manus不仅能够理解用户的自然语言指令,还能拆解任务、自动执行,并交付完整的成果。这标志着AI进入了一个新的发展
- AI与大数据融合:技术路径与行业赋能
互联网Ai好者
人工智能大数据
在数字化浪潮中,数据已成为驱动社会与商业变革的核心生产要素。据IDC预测,2025年全球数据总量将增长至175ZB,其中物联网设备、社交媒体及企业数字化系统贡献了80%的增量数据。面对海量异构数据的处理需求,传统分析工具已显现出明显局限:Gartner研究指出,仅35%的企业能有效利用其数据资产。在此背景下,人工智能技术通过算法突破与算力跃迁,正重塑大数据价值挖掘范式,构建从数据感知到决策闭环的全
- AI大模型在职业教育中的应用解决方案
中年猿人
人工智能ai学习
1.引言随着新经济、新技术的加速发展和经济结构的不断调整,职业教育迎来了新的发展机遇与挑战。传统的职业教育模式难以满足日益个性化、多样化的学习需求,同时,技术快速更迭使得职业技能更新频率大幅提高。这些变化要求职业教育能够更加灵活、高效地适应劳动力市场的需求,并为学生提供与时俱进的技能培养。人工智能(AI)作为一种前沿的科技趋势,其大模型技术通过强大的数据处理能力和学习算法,在众多行业中均展现了巨大
- 【硬核拆解】DeepSeek开源周五连击:中国AI底层技术的“破壁之战”
shelly聊AI
AI核心技术AI应用工具开源人工智能deepseek深度学习
大家好,我是Shelly,一个专注于输出AI工具和科技前沿内容的AI应用教练,体验过300+款以上的AI应用工具。关注科技及大模型领域对社会的影响10年+。关注我一起驾驭AI工具,拥抱AI时代的到来。当全球AI竞赛聚焦于大模型军备竞赛时,DeepSeek开源周的五连发,却将战火引向了更底层的技术战场。从GPU计算内核到分布式训练框架,用五大开源项目,在硬件适配、算力优化、通信调度等“卡脖子”领域打
- 弹性算力革命:企业级GPU云服务如何重构AI与图形处理的效能边界
企业级GPU云服务是一种面向企业用户,基于云计算技术,将强大的图形处理器(GPU)资源以服务的形式提供给企业的创新模式。通过这种模式,企业无需自行购置、安装和维护昂贵的GPU硬件设备,只需按需从云端获取GPU计算资源,就能满足自身多样化的业务需求。随着人工智能、大数据、深度学习、虚拟现实以及高性能计算等前沿技术在各行业的深入渗透,企业对于大规模并行计算能力的要求越来越高。GPU凭借其卓越的并行计算
- 弹性算力革命:企业级GPU云服务如何重构AI与图形处理的效能边界
企业级GPU云服务是一种面向企业用户,基于云计算技术,将强大的图形处理器(GPU)资源以服务的形式提供给企业的创新模式。通过这种模式,企业无需自行购置、安装和维护昂贵的GPU硬件设备,只需按需从云端获取GPU计算资源,就能满足自身多样化的业务需求。随着人工智能、大数据、深度学习、虚拟现实以及高性能计算等前沿技术在各行业的深入渗透,企业对于大规模并行计算能力的要求越来越高。GPU凭借其卓越的并行计算
- 企业数据挖掘平台×DeepSeek强强联合,多种应用场景适用
泰迪智能科技01
DeepSeek数据挖掘人工智能
企业数据挖掘建模平台简单易用,可提供代码方便定制,全面培训服务+丰富模型参考+专业建模人员支持服务。在科技飞速发展的今天,人工智能领域的每一次突破都如同投入湖面的巨石,激起层层波澜。DeepSeek作为大模型领域的璀璨新星,以其卓越的技术实力和创新的应用模式,成为了全球瞩目的焦点,也为高校教育、企业发展都带来了前所未有的机遇与变革。当数据挖掘平台×DeepSeek强强联合,又会碰撞出怎样的火花呢?
- tomcat基础与部署发布
暗黑小菠萝
Tomcat java web
从51cto搬家了,以后会更新在这里方便自己查看。
做项目一直用tomcat,都是配置到eclipse中使用,这几天有时间整理一下使用心得,有一些自己配置遇到的细节问题。
Tomcat:一个Servlets和JSP页面的容器,以提供网站服务。
一、Tomcat安装
安装方式:①运行.exe安装包
&n
- 网站架构发展的过程
ayaoxinchao
数据库应用服务器网站架构
1.初始阶段网站架构:应用程序、数据库、文件等资源在同一个服务器上
2.应用服务和数据服务分离:应用服务器、数据库服务器、文件服务器
3.使用缓存改善网站性能:为应用服务器提供本地缓存,但受限于应用服务器的内存容量,可以使用专门的缓存服务器,提供分布式缓存服务器架构
4.使用应用服务器集群改善网站的并发处理能力:使用负载均衡调度服务器,将来自客户端浏览器的访问请求分发到应用服务器集群中的任何
- [信息与安全]数据库的备份问题
comsci
数据库
如果你们建设的信息系统是采用中心-分支的模式,那么这里有一个问题
如果你的数据来自中心数据库,那么中心数据库如果出现故障,你的分支机构的数据如何保证安全呢?
是否应该在这种信息系统结构的基础上进行改造,容许分支机构的信息系统也备份一个中心数据库的文件呢?
&n
- 使用maven tomcat plugin插件debug关联源代码
商人shang
mavendebug查看源码tomcat-plugin
*首先需要配置好'''maven-tomcat7-plugin''',参见[[Maven开发Web项目]]的'''Tomcat'''部分。
*配置好后,在[[Eclipse]]中打开'''Debug Configurations'''界面,在'''Maven Build'''项下新建当前工程的调试。在'''Main'''选项卡中点击'''Browse Workspace...'''选择需要开发的
- 大访问量高并发
oloz
大访问量高并发
大访问量高并发的网站主要压力还是在于数据库的操作上,尽量避免频繁的请求数据库。下面简
要列出几点解决方案:
01、优化你的代码和查询语句,合理使用索引
02、使用缓存技术例如memcache、ecache将不经常变化的数据放入缓存之中
03、采用服务器集群、负载均衡分担大访问量高并发压力
04、数据读写分离
05、合理选用框架,合理架构(推荐分布式架构)。
- cache 服务器
小猪猪08
cache
Cache 即高速缓存.那么cache是怎么样提高系统性能与运行速度呢?是不是在任何情况下用cache都能提高性能?是不是cache用的越多就越好呢?我在近期开发的项目中有所体会,写下来当作总结也希望能跟大家一起探讨探讨,有错误的地方希望大家批评指正。
1.Cache 是怎么样工作的?
Cache 是分配在服务器上
- mysql存储过程
香水浓
mysql
Description:插入大量测试数据
use xmpl;
drop procedure if exists mockup_test_data_sp;
create procedure mockup_test_data_sp(
in number_of_records int
)
begin
declare cnt int;
declare name varch
- CSS的class、id、css文件名的常用命名规则
agevs
JavaScriptUI框架Ajaxcss
CSS的class、id、css文件名的常用命名规则
(一)常用的CSS命名规则
头:header
内容:content/container
尾:footer
导航:nav
侧栏:sidebar
栏目:column
页面外围控制整体布局宽度:wrapper
左右中:left right
- 全局数据源
AILIKES
javatomcatmysqljdbcJNDI
实验目的:为了研究两个项目同时访问一个全局数据源的时候是创建了一个数据源对象,还是创建了两个数据源对象。
1:将diuid和mysql驱动包(druid-1.0.2.jar和mysql-connector-java-5.1.15.jar)copy至%TOMCAT_HOME%/lib下;2:配置数据源,将JNDI在%TOMCAT_HOME%/conf/context.xml中配置好,格式如下:&l
- MYSQL的随机查询的实现方法
baalwolf
mysql
MYSQL的随机抽取实现方法。举个例子,要从tablename表中随机提取一条记录,大家一般的写法就是:SELECT * FROM tablename ORDER BY RAND() LIMIT 1。但是,后来我查了一下MYSQL的官方手册,里面针对RAND()的提示大概意思就是,在ORDER BY从句里面不能使用RAND()函数,因为这样会导致数据列被多次扫描。但是在MYSQL 3.23版本中,
- JAVA的getBytes()方法
bijian1013
javaeclipseunixOS
在Java中,String的getBytes()方法是得到一个操作系统默认的编码格式的字节数组。这个表示在不同OS下,返回的东西不一样!
String.getBytes(String decode)方法会根据指定的decode编码返回某字符串在该编码下的byte数组表示,如:
byte[] b_gbk = "
- AngularJS中操作Cookies
bijian1013
JavaScriptAngularJSCookies
如果你的应用足够大、足够复杂,那么你很快就会遇到这样一咱种情况:你需要在客户端存储一些状态信息,这些状态信息是跨session(会话)的。你可能还记得利用document.cookie接口直接操作纯文本cookie的痛苦经历。
幸运的是,这种方式已经一去不复返了,在所有现代浏览器中几乎
- [Maven学习笔记五]Maven聚合和继承特性
bit1129
maven
Maven聚合
在实际的项目中,一个项目通常会划分为多个模块,为了说明问题,以用户登陆这个小web应用为例。通常一个web应用分为三个模块:
1. 模型和数据持久化层user-core,
2. 业务逻辑层user-service以
3. web展现层user-web,
user-service依赖于user-core
user-web依赖于user-core和use
- 【JVM七】JVM知识点总结
bit1129
jvm
1. JVM运行模式
1.1 JVM运行时分为-server和-client两种模式,在32位机器上只有client模式的JVM。通常,64位的JVM默认都是使用server模式,因为server模式的JVM虽然启动慢点,但是,在运行过程,JVM会尽可能的进行优化
1.2 JVM分为三种字节码解释执行方式:mixed mode, interpret mode以及compiler
- linux下查看nginx、apache、mysql、php的编译参数
ronin47
在linux平台下的应用,最流行的莫过于nginx、apache、mysql、php几个。而这几个常用的应用,在手工编译完以后,在其他一些情况下(如:新增模块),往往想要查看当初都使用了那些参数进行的编译。这时候就可以利用以下方法查看。
1、nginx
[root@361way ~]# /App/nginx/sbin/nginx -V
nginx: nginx version: nginx/
- unity中运用Resources.Load的方法?
brotherlamp
unity视频unity资料unity自学unityunity教程
问:unity中运用Resources.Load的方法?
答:Resources.Load是unity本地动态加载资本所用的方法,也即是你想动态加载的时分才用到它,比方枪弹,特效,某些实时替换的图像什么的,主张此文件夹不要放太多东西,在打包的时分,它会独自把里边的一切东西都会集打包到一同,不论里边有没有你用的东西,所以大多数资本应该是自个建文件放置
1、unity实时替换的物体即是依据环境条件
- 线段树-入门
bylijinnan
java算法线段树
/**
* 线段树入门
* 问题:已知线段[2,5] [4,6] [0,7];求点2,4,7分别出现了多少次
* 以下代码建立的线段树用链表来保存,且树的叶子结点类似[i,i]
*
* 参考链接:http://hi.baidu.com/semluhiigubbqvq/item/be736a33a8864789f4e4ad18
* @author lijinna
- 全选与反选
chicony
全选
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
<html>
<head>
<title>全选与反选</title>
- vim一些简单记录
chenchao051
vim
mac在/usr/share/vim/vimrc linux在/etc/vimrc
1、问:后退键不能删除数据,不能往后退怎么办?
答:在vimrc中加入set backspace=2
2、问:如何控制tab键的缩进?
答:在vimrc中加入set tabstop=4 (任何
- Sublime Text 快捷键
daizj
快捷键sublime
[size=large][/size]Sublime Text快捷键:Ctrl+Shift+P:打开命令面板Ctrl+P:搜索项目中的文件Ctrl+G:跳转到第几行Ctrl+W:关闭当前打开文件Ctrl+Shift+W:关闭所有打开文件Ctrl+Shift+V:粘贴并格式化Ctrl+D:选择单词,重复可增加选择下一个相同的单词Ctrl+L:选择行,重复可依次增加选择下一行Ctrl+Shift+L:
- php 引用(&)详解
dcj3sjt126com
PHP
在PHP 中引用的意思是:不同的名字访问同一个变量内容. 与C语言中的指针是有差别的.C语言中的指针里面存储的是变量的内容在内存中存放的地址 变量的引用 PHP 的引用允许你用两个变量来指向同一个内容 复制代码代码如下:
<?
$a="ABC";
$b =&$a;
echo
- SVN中trunk,branches,tags用法详解
dcj3sjt126com
SVN
Subversion有一个很标准的目录结构,是这样的。比如项目是proj,svn地址为svn://proj/,那么标准的svn布局是svn://proj/|+-trunk+-branches+-tags这是一个标准的布局,trunk为主开发目录,branches为分支开发目录,tags为tag存档目录(不允许修改)。但是具体这几个目录应该如何使用,svn并没有明确的规范,更多的还是用户自己的习惯。
- 对软件设计的思考
e200702084
设计模式数据结构算法ssh活动
软件设计的宏观与微观
软件开发是一种高智商的开发活动。一个优秀的软件设计人员不仅要从宏观上把握软件之间的开发,也要从微观上把握软件之间的开发。宏观上,可以应用面向对象设计,采用流行的SSH架构,采用web层,业务逻辑层,持久层分层架构。采用设计模式提供系统的健壮性和可维护性。微观上,对于一个类,甚至方法的调用,从计算机的角度模拟程序的运行情况。了解内存分配,参数传
- 同步、异步、阻塞、非阻塞
geeksun
非阻塞
同步、异步、阻塞、非阻塞这几个概念有时有点混淆,在此文试图解释一下。
同步:发出方法调用后,当没有返回结果,当前线程会一直在等待(阻塞)状态。
场景:打电话,营业厅窗口办业务、B/S架构的http请求-响应模式。
异步:方法调用后不立即返回结果,调用结果通过状态、通知或回调通知方法调用者或接收者。异步方法调用后,当前线程不会阻塞,会继续执行其他任务。
实现:
- Reverse SSH Tunnel 反向打洞實錄
hongtoushizi
ssh
實際的操作步驟:
# 首先,在客戶那理的機器下指令連回我們自己的 Server,並設定自己 Server 上的 12345 port 會對應到幾器上的 SSH port
ssh -NfR 12345:localhost:22 fred@myhost.com
# 然後在 myhost 的機器上連自己的 12345 port,就可以連回在客戶那的機器
ssh localhost -p 1
- Hibernate中的缓存
Josh_Persistence
一级缓存Hiberante缓存查询缓存二级缓存
Hibernate中的缓存
一、Hiberante中常见的三大缓存:一级缓存,二级缓存和查询缓存。
Hibernate中提供了两级Cache,第一级别的缓存是Session级别的缓存,它是属于事务范围的缓存。这一级别的缓存是由hibernate管理的,一般情况下无需进行干预;第二级别的缓存是SessionFactory级别的缓存,它是属于进程范围或群集范围的缓存。这一级别的缓存
- 对象关系行为模式之延迟加载
home198979
PHP架构延迟加载
形象化设计模式实战 HELLO!架构
一、概念
Lazy Load:一个对象,它虽然不包含所需要的所有数据,但是知道怎么获取这些数据。
延迟加载貌似很简单,就是在数据需要时再从数据库获取,减少数据库的消耗。但这其中还是有不少技巧的。
二、实现延迟加载
实现Lazy Load主要有四种方法:延迟初始化、虚
- xml 验证
pengfeicao521
xmlxml解析
有些字符,xml不能识别,用jdom或者dom4j解析的时候就报错
public static void testPattern() {
// 含有非法字符的串
String str = "Jamey친ÑԂ
- div设置半透明效果
spjich
css半透明
为div设置如下样式:
div{filter:alpha(Opacity=80);-moz-opacity:0.5;opacity: 0.5;}
说明:
1、filter:对win IE设置半透明滤镜效果,filter:alpha(Opacity=80)代表该对象80%半透明,火狐浏览器不认2、-moz-opaci
- 你真的了解单例模式么?
w574240966
java单例设计模式jvm
单例模式,很多初学者认为单例模式很简单,并且认为自己已经掌握了这种设计模式。但事实上,你真的了解单例模式了么。
一,单例模式的5中写法。(回字的四种写法,哈哈。)
1,懒汉式
(1)线程不安全的懒汉式
public cla