- ResNet(Residual Network)
不想秃头的程序
神经网络语音识别人工智能深度学习网络残差网络神经网络
ResNet(ResidualNetwork)是深度学习中一种经典的卷积神经网络(CNN)架构,由微软研究院的KaimingHe等人在2015年提出。它通过引入残差连接(SkipConnection)解决了深度神经网络中的梯度消失问题,使得网络可以训练极深的模型(如上百层),并在图像分类、目标检测、语义分割等任务中取得了突破性成果。以下是ResNet的详细介绍:一、核心思想ResNet的核心创新是
- P25:LSTM实现糖尿病探索与预测
?Agony
lstm人工智能rnn
本文为365天深度学习训练营中的学习记录博客原作者:K同学啊一、相关技术1.LSTM基本概念LSTM(长短期记忆网络)是RNN(循环神经网络)的一种变体,它通过引入特殊的结构来解决传统RNN中的梯度消失和梯度爆炸问题,特别适合处理序列数据。结构组成:遗忘门:决定丢弃哪些信息,通过sigmoid函数输出0-1之间的值,表示保留或遗忘的程度。输入门:决定更新哪些信息,同样通过sigmoid函数控制更新
- 基于灰色马尔科夫模型预测人口数量,是一种结合灰色系统理论(处理少数据、不确定性)与马尔科夫链(描述随机波动)的融合预测方法
利用灰色模型捕捉人口变化的总体趋势,再通过马尔科夫链修正因随机因素导致的预测偏差,从而提高预测精度。一、模型理论基础灰色系统理论原理(核心:处理少数据、部分信息未知的系统)差异信息原理:系统内外的差异是信息源,人口数据的时间序列差异蕴含变化规律。解的非唯一性原理:信息不完全时,预测结果存在多个可能区间(与马尔科夫状态划分契合)。最小信息原理:仅需少量历史数据(通常≥4个)即可建模,适合人口统计资料
- 【机器学习与数据挖掘实战 | 医疗】案例18:基于Apriori算法的中医证型关联规则分析
Francek Chen
机器学习与数据挖掘实战机器学习数据挖掘Aprioripython关联规则人工智能
【作者主页】FrancekChen【专栏介绍】⌈⌈⌈机器学习与数据挖掘实战⌋⌋⌋机器学习是人工智能的一个分支,专注于让计算机系统通过数据学习和改进。它利用统计和计算方法,使模型能够从数据中自动提取特征并做出预测或决策。数据挖掘则是从大型数据集中发现模式、关联和异常的过程,旨在提取有价值的信息和知识。机器学习为数据挖掘提供了强大的分析工具,而数据挖掘则是机器学习应用的重要领域,两者相辅相成,共同推动
- ROS:录制相机、IMU、GNSS等设备数据
吃水果不削皮
视觉组合导航ROSVIO
文章目录简介录制数据️准备工作录制相机录制串口设备录制数据项目地址简介在ROS中,录制传感器数据(如相机、IMU等)常使用rosbag工具,它可以将ROS话题消息保存为.bag文件,供后续回放或分析。本文使用jetson-tx2核心板作为录制平台,录制微光相机数据和六轴IMU数据,用于相机标定、IMU标定、相机-IMU联合标定与VIO轨迹分析。相机标定详见:相机-IMU联合标定:相机标定IMU标定
- AI助力基因数据分析:用Python玩转生命密码的秘密
Echo_Wish
前沿技术人工智能人工智能数据分析python
AI助力基因数据分析:用Python玩转生命密码的秘密说到基因数据,听起来是不是感觉有点高大上?其实,基因数据分析正变得越来越“接地气”,而AI正是这条路上的神奇钥匙。今天,咱们就用Python聊聊如何利用AI技术做基因数据分析与建模,帮你破解生命的密码,找到疾病预测、个性化医疗的新路子。一、基因数据为何如此特别?基因组测序技术让我们能够获取人体细胞内数以百万计的DNA序列变异信息。但数据量巨大、
- 用Python实现生信分析——功能预测详解
写代码的M教授
生信分析python开发语言
功能预测是生物信息学中的一项重要任务,通过分析基因或蛋白质序列的特征,推测它们的生物学功能。功能预测通常涉及多种方法,包括序列比对、基序识别、机器学习模型等。这些方法可以帮助科学家推断未知基因的功能,从而加速生物学研究的进展。1.功能预测的主要方法(1)同源性比对:通过将未知基因或蛋白质序列与数据库中的已知序列进行比对,识别出同源序列,并推测它们的功能。常用工具包括BLAST、HMMER等。(2)
- 60天python训练计划----day55
DAY55序列预测任务介绍知识点回顾序列预测介绍单步预测多步预测的2种方式序列数据的处理:滑动窗口多输入多输出任务的思路经典机器学习在序列任务上的劣势;以随机森林为例一、序列预测任务介绍1.1序列预测是什么?我们之前接触到的结构化数据,它本身不具备顺序,我们认为每个样本之间独立无关,样本之间即使调换顺序,仍然不影响模型的训练。但是日常中很多数据是存在先后关系的,而他们对应的任务是预测下一步的值,我
- 强化学习-双臂老虎机
transuperb
强化学习人工智能
本篇文章模拟AI玩两个老虎机,AI需要判断出哪个老虎机收益更大,然后根据反馈调整对于不同老虎机的价值判断,如果把这个看作一个简单的强化学习的话,那么AI就是agent,两个老虎机就是environment,AI首先会对两台老虎机有一个预测值Q,预测哪一个的价值高,然后AI通过策略函数判断应该选择哪个老虎机,进行Action后根据Reward更新每个老虎机的价值Value,然后再进行下一次判断,直到
- 基于Python Anaconda环境,使用CNN-LSTM模型预测碳交易价格的完整技术方案
神经网络15044
仿真模型算法机器学习pythoncnnlstm
以下是一个基于PythonAnaconda环境,使用CNN-LSTM模型预测碳交易价格的完整技术方案。内容涵盖数据预处理、模型构建、训练优化、预测可视化和结果分析等核心环节,代码与文字说明共计超过6000字。基于CNN-LSTM的碳交易价格预测系统设计与实现一、项目背景与目标1.1碳交易市场概述碳交易作为应对气候变化的重要市场机制,其价格波动直接影响企业减排决策。准确预测碳价(CarbonEmis
- fps游戏中网络同步优化方案
你一身傲骨怎能输
Unity游戏性能优化游戏网络
在FPS(第一人称射击)游戏中,网络同步是确保所有玩家在游戏世界中看到一致状态的关键技术。网络延迟和丢包等问题可能导致玩家之间的游戏体验不一致,影响游戏的公平性和乐趣。以下是一些优化网络同步的方案:使用UDP协议:由于UDP协议比TCP协议有更低的延迟,它通常被用于实时游戏网络通信。客户端预测(ClientPrediction):客户端可以预测玩家的移动和操作,而不是等待服务器的确认,这样可以减少
- MATLAB实现WOA-BP鲸鱼优化算法优化BP神经网络多输入单输出回归预测(含模型描述及示例代码)
nantangyuxi
MATLAB含模型描述及示例代码算法matlab神经网络大数据人工智能深度学习机器学习
目录MATLAB实现WOA-BP鲸鱼优化算法优化BP神经网络多输入单输出回归预测(多指标,多图)1项目背景介绍...1项目目标与意义...2项目挑战...3项目特点与创新...5<
- 每天一个前端小知识 Day 14 - 前端状态管理深入实践
蓝婷儿
前端面试前端
前端状态管理深入实践(Redux、Pinia、Zustand等)为什么需要状态管理?当组件之间状态通信越来越复杂时,靠props和事件传递会变得非常难维护。状态管理工具提供:目标实现方式状态集中管理将状态集中存放,避免组件深层传递状态可预测、可追踪有清晰的流转逻辑(Action→Reducer→Store)跨组件通信无需propsdrilling(逐层传递)支持模块拆分与中间件支持插件化、按模块加
- 基于大模型的短暂性脑缺血发作(TIA)全流程预测与诊疗辅助系统技术方案大纲
LCG元
大模型医疗研究-方案大纲方案大纲人工智能深度学习机器学习
目录一、系统核心目标二、系统架构模块三、实验验证证据链系统架构流程图关键技术创新点一、系统核心目标构建多模态数据融合的TIA预测-干预-管理闭环,覆盖术前预警、术中决策、术后康复全周期二、系统架构模块1.术前预测模块高危人群筛查模型输入:电子健康记录(EHR)、基因数据、可穿戴设备实时监测特征工程:血压波动模式、颈动脉斑块稳定性评分TIA发作概率预测72小时预警模型(LSTM+Transforme
- 大模型在坏疽及穿孔性阑尾炎预测与治疗方案制定中的应用研究
LCG元
围术期危险因子预测模型研究人工智能机器学习深度学习
目录一、引言1.1研究背景与意义1.2研究目的与创新点二、大模型技术概述2.1大模型原理与架构2.2医学领域相关应用案例三、坏疽及穿孔性阑尾炎的术前预测3.1危险因素分析3.2大模型预测模型构建3.3预测结果与临床评估四、基于预测的手术方案制定4.1手术方式选择依据4.2手术步骤与关键要点4.3案例分析五、麻醉方案确定5.1麻醉方式选择5.2麻醉药物使用5.3麻醉过程监测与管理六、术中情况监测与处
- 基于大模型的心力衰竭预测与干预全流程系统技术方案大纲
LCG元
大模型医疗研究-方案大纲方案大纲深度学习机器学习人工智能
目录一、引言二、系统概述三、术前阶段(一)患者信息采集与预处理(二)大模型预测心力衰竭风险(三)手术方案制定辅助(四)麻醉方案规划四、术中阶段(一)实时数据监测与传输(二)大模型术中决策支持五、术后阶段(一)术后病情监测与评估(二)并发症风险预测与防控(三)术后护理计划生成六、健康教育与指导(一)个性化教育内容生成(二)康复随访与远程指导七、统计分析与技术验证(一)系统性能评估指标(二)数据分割与
- 历史轨迹组件性能优化方案
欧阳天羲
性能优化前端
针对历史轨迹组件的性能优化,可从数据处理、渲染策略、内存管理和交互优化四个方面入手。以下是具体的优化方向和实现方案:一、数据处理优化1.轨迹数据抽稀算法原理:在不影响轨迹整体形状的前提下,减少轨迹点数量实现方案:采用Douglas-Peucker算法实现轨迹抽稀提供抽稀精度参数,根据地图缩放级别动态调整示例代码://轨迹抽稀函数exportconstsimplifyTrajectory=(poin
- The AI Moat Pyramid:构建不可复制的 AI 护城河
编者按:我们今天为大家带来的文章,作者的观点是:真正的AI护城河需要系统性地构建六层递进式能力,从技术底座到战略壁垒,缺一不可。文章提出了“AIMoatPyramid”框架,详细阐述了六个关键层级:第一层的定制化模型与算法开发,强调超越开源模型性能且支持快速重训练;第二层的专有数据资产,要求数据具备独特性、可用性和普及性;第三层的工作流集成,实现30秒内从预测到决策的自动化闭环;第四层的领域专精,
- 入选 ICML 2025!哈佛医学院等推出全球首个 HIE 领域临床思维图谱模型,神经认知结果预测任务上性能提升 15%
hyperai
在人工智能技术突飞猛进的当下,大型视觉-语言模型(LVLMs)正以惊人的速度重塑多个领域的认知边界。在自然图像与视频分析领域,这类模型依托先进的神经网络架构、海量标注数据集与强大算力支持,已能精准完成物体识别、场景解析等高阶任务。而在自然语言处理领域,LVLMs通过对TB级文本语料的学习,在机器翻译、文本摘要、情感分析等任务上达到专业级水准,其生成的学术摘要甚至能精准提炼医学文献的核心结论。然而当
- YOLOv5-7.0解决报错 wandb: Network error (TransientError), entering retry loop.
Paper Clouds
Yolo目标检测YOLO人工智能机器学习pythonpytorch深度学习目标检测
前言最近在复习yolov5目标检测代码时用了yolov5的最新7.0版本,之前用的是5.0版本,这一新版本相对于之前做了一些提升,对于package的兼容也要好了很多,但也不是说下载了直接就能运行,实际使用过程中还是遇到了许多新的问题,下面就我自己碰到的问题提出解决方法。问题wandb是非常好用的可视化工具,但是国内的话,使用时常常会无法同步数据,需要借助魔法来连接服务器,而yolov5的源码恰恰
- 【架构】软件成熟度模型与评估体系深度解析
EulerBlind
架构架构
一、软件成熟度概述1.1软件成熟度的定义与内涵软件成熟度是指软件组织在软件开发、维护和管理过程中的能力水平和规范化程度。它反映了组织在软件工程实践中的系统性、可预测性和有效性。高成熟度的组织能够持续稳定地交付高质量的软件产品,并能够根据业务需求和技术变化及时调整其流程。成熟度模型的核心理念是通过定义一系列阶段性的目标和标准,引导组织系统性地提升其能力水平,最终实现可预测、高效和高质量的软件开发。1
- C++ OpenCV4 实现鱼眼镜头矫正
朝风工作室
c++开发语言
一、为什么需要鱼眼镜头矫正?鱼眼镜头通过特殊的光学设计实现180°甚至更广的视野,广泛应用于全景相机、自动驾驶、安防监控等领域。但这种广角特性会引入严重的桶形畸变:直线边缘会向内弯曲(如图像边缘的门框变成弧线),物体尺寸在边缘区域会被拉伸。矫正的核心目标:将鱼眼镜头拍摄的畸变图像还原为接近人眼视觉的正常图像,便于后续的目标检测、图像拼接等处理。矫正前后效果对比(此处可插入图片)矫正前图像(鱼眼畸变
- 使用随机森林实现目标检测
司南锤
python基础学习AI随机森林
核心实现思路滑动窗口策略:在图像上滑动固定大小的窗口,对每个窗口进行分类多维特征提取:结合统计特征、纹理特征、边缘特征、形状特征等随机森林分类:训练二分类器判断窗口是否包含目标后处理优化:使用非极大值抑制减少重复检测特征工程的重要性LBP纹理特征:捕捉局部纹理模式灰度共生矩阵:描述纹理的统计特性边缘密度:反映目标边界信息形状描述符:圆形度、面积比等几何特征实际应用建议数据收集:收集大量正负样本进行
- 体育赛事大数据分析:AI模型对足球大小球预测的精度优化
东奔西走的小喇叭
人工智能数据分析机器学习
在足球赛事的大数据分析中,AI模型对“大小球”(总进球数是否高于/低于预设值,如2.5球)的预测优化是一个复杂但具有实际价值的课题。以下从技术实现、数据策略、模型优化及挑战四个维度展开分析:1.数据来源与特征工程核心数据源结构化比赛数据:历史进球数、射门/射正率、控球率、角球、任意球、红黄牌、伤停球员等。球队动态特征:近期5-10场进攻/防守效率、主客场表现、战术风格(如高位逼抢或防守反击)。球员
- 开源低代码平台测评:2025年Top 10工具对比
知识产权13937636601
计算机AI大模型
本文基于功能性、性能、社区生态与企业适配度四大维度,对2025年主流开源低代码平台进行系统性评测。通过对比Appsmith、ToolJet、Budibase等Top10工具,分析其在可视化开发、数据集成、多端交付等方面的技术差异。研究发现,头部平台已实现90%以上场景的无代码覆盖,并通过AI辅助生成与云原生架构显著提升开发效率。结论提出制造业、金融业等典型行业的选型建议,并预测未来低代码工具将深度
- 水文学模型学习笔记:马斯京根(Muskingum)河道汇流算法
Lunar*
水文算法学习笔记
引言在水文学和水资源管理中,河道汇流演算是一个至关重要的环节。它用于预测洪水波在河道中向下游传播时的形态变化,是进行洪水预报、水库调度和防洪规划的基础。马斯京根法(MuskingumMethod)是其中最经典和应用最广泛的河道汇流计算方法之一。本文将从马斯京根法的基础理论出发,推导其演算方程,并重点解析一种更稳定和精确的改进方法——分段连续马斯京根法,最后提供并解读一个完整、鲁棒的Python实现
- 【PyCharm 使用技巧】PyCharm 基本功能详解 || 【Jupyter Notebook】如何进入其它盘,如D盘?H盘?|| 【机器学习】聚类算法详解及其应用 || 道路交通流量模拟预测
追光者♂
Python从入门到人工智能工具技巧解决办法百题千解计划(项目实战案例)PyCharm使用技巧Jupyter如何进入其它盘聚类算法练习PyCharm详解时空交通流预测模拟
作者主页:追光者♂个人简介:在读计算机专业硕士研究生、CSDN-人工智能领域新星创作者、2022年CSDN博客之星人工智能领域TOP4、阿里云社区专家博主【无限进步,一起追光!】欢迎点赞收藏⭐留言本篇的目录一,是请看目录四——PyCharm基础设置回顾的续篇,继续记录讲解PyCharm的基本功能。目录二回顾了在使用Jupyter时的问题。目录三练习了机器学习算法中的聚类算法。目录一、再次了解PyC
- Boosting:从理论到实践——集成学习中的偏差征服者
大千AI助手
人工智能Python#OTHER集成学习boosting机器学习tree人工智能ML
核心定位:一种通过串行训练弱学习器、自适应调整数据权重,将多个弱模型组合成强模型的集成学习框架,专注于降低预测偏差。本文由「大千AI助手」原创发布,专注用真话讲AI,回归技术本质。拒绝神话或妖魔化。搜索「大千AI助手」关注我,一起撕掉过度包装,学习真实的AI技术!一、Boosting的本质目标:将一系列弱学习器(仅比随机猜测略好,如浅层决策树)组合成强学习器核心思想:错误驱动学习:后续模型重点修正
- XGBoost算法原理及Python实现
法号清水
算法python开发语言
一、概述 XGBoost是一种基于梯度提升框架的机器学习算法,它通过迭代地训练一系列决策树来构建模型。核心思想是通过不断地在已有模型的基础上,拟合负梯度方向的残差(真实值与预测值的差)来构建新的弱学习器,达到逐步优化模型的目的。 XGBoost在构建决策树时,利用了二阶导数信息。在损失函数的优化过程中,不仅考虑了一阶导数(梯度),还引入了二阶导数(海森矩阵),这使得算法能够更精确地找到损失函数
- 毕业一年,想转行,在IT方向(大数据分析)与财务(注会)间犹豫,不知哪个更有发展前景?
cda2024
数据分析数据挖掘
毕业一年,职场新人往往会面临职业发展的关键选择。如果你正在IT方向(大数据分析)与财务(注会)之间犹豫,不知道哪个更有发展前景,那么这篇文章或许能为你提供一些有价值的参考。本文将从行业趋势、职业发展路径、技能需求等方面进行深入分析,帮助你在两个方向中做出更明智的选择。行业趋势大数据分析随着信息技术的飞速发展,大数据已经渗透到各个领域,成为推动企业创新和增长的重要力量。根据IDC的预测,全球大数据市
- TOMCAT在POST方法提交参数丢失问题
357029540
javatomcatjsp
摘自http://my.oschina.net/luckyi/blog/213209
昨天在解决一个BUG时发现一个奇怪的问题,一个AJAX提交数据在之前都是木有问题的,突然提交出错影响其他处理流程。
检查时发现页面处理数据较多,起初以为是提交顺序不正确修改后发现不是由此问题引起。于是删除掉一部分数据进行提交,较少数据能够提交成功。
恢复较多数据后跟踪提交FORM DATA ,发现数
- 在MyEclipse中增加JSP模板 删除-2008-08-18
ljy325
jspxmlMyEclipse
在D:\Program Files\MyEclipse 6.0\myeclipse\eclipse\plugins\com.genuitec.eclipse.wizards_6.0.1.zmyeclipse601200710\templates\jsp 目录下找到Jsp.vtl,复制一份,重命名为jsp2.vtl,然后把里面的内容修改为自己想要的格式,保存。
然后在 D:\Progr
- JavaScript常用验证脚本总结
eksliang
JavaScriptjavaScript表单验证
转载请出自出处:http://eksliang.iteye.com/blog/2098985
下面这些验证脚本,是我在这几年开发中的总结,今天把他放出来,也算是一种分享吧,现在在我的项目中也在用!包括日期验证、比较,非空验证、身份证验证、数值验证、Email验证、电话验证等等...!
&nb
- 微软BI(4)
18289753290
微软BI SSIS
1)
Q:查看ssis里面某个控件输出的结果:
A MessageBox.Show(Dts.Variables["v_lastTimestamp"].Value.ToString());
这是我们在包里面定义的变量
2):在关联目的端表的时候如果是一对多的关系,一定要选择唯一的那个键作为关联字段。
3)
Q:ssis里面如果将多个数据源的数据插入目的端一
- 定时对大数据量的表进行分表对数据备份
酷的飞上天空
大数据量
工作中遇到数据库中一个表的数据量比较大,属于日志表。正常情况下是不会有查询操作的,但如果不进行分表数据太多,执行一条简单sql语句要等好几分钟。。
分表工具:linux的shell + mysql自身提供的管理命令
原理:使用一个和原表数据结构一样的表,替换原表。
linux shell内容如下:
=======================开始 
- 本质的描述与因材施教
永夜-极光
感想随笔
不管碰到什么事,我都下意识的想去探索本质,找寻一个最形象的描述方式。
我坚信,世界上对一件事物的描述和解释,肯定有一种最形象,最贴近本质,最容易让人理解
&
- 很迷茫。。。
随便小屋
随笔
小弟我今年研一,也是从事的咱们现在最流行的专业(计算机)。本科三流学校,为了能有个更好的跳板,进入了考研大军,非常有幸能进入研究生的行业(具体学校就不说了,怕把学校的名誉给损了)。
先说一下自身的条件,本科专业软件工程。主要学习就是软件开发,几乎和计算机没有什么区别。因为学校本身三流,也就是让老师带着学生学点东西,然后让学生毕业就行了。对专业性的东西了解的非常浅。就那学的语言来说
- 23种设计模式的意图和适用范围
aijuans
设计模式
Factory Method 意图 定义一个用于创建对象的接口,让子类决定实例化哪一个类。Factory Method 使一个类的实例化延迟到其子类。 适用性 当一个类不知道它所必须创建的对象的类的时候。 当一个类希望由它的子类来指定它所创建的对象的时候。 当类将创建对象的职责委托给多个帮助子类中的某一个,并且你希望将哪一个帮助子类是代理者这一信息局部化的时候。
Abstr
- Java中的synchronized和volatile
aoyouzi
javavolatilesynchronized
说到Java的线程同步问题肯定要说到两个关键字synchronized和volatile。说到这两个关键字,又要说道JVM的内存模型。JVM里内存分为main memory和working memory。 Main memory是所有线程共享的,working memory则是线程的工作内存,它保存有部分main memory变量的拷贝,对这些变量的更新直接发生在working memo
- js数组的操作和this关键字
百合不是茶
js数组操作this关键字
js数组的操作;
一:数组的创建:
1、数组的创建
var array = new Array(); //创建一个数组
var array = new Array([size]); //创建一个数组并指定长度,注意不是上限,是长度
var arrayObj = new Array([element0[, element1[, ...[, elementN]]]
- 别人的阿里面试感悟
bijian1013
面试分享工作感悟阿里面试
原文如下:http://greemranqq.iteye.com/blog/2007170
一直做企业系统,虽然也自己一直学习技术,但是感觉还是有所欠缺,准备花几个月的时间,把互联网的东西,以及一些基础更加的深入透析,结果这次比较意外,有点突然,下面分享一下感受吧!
&nb
- 淘宝的测试框架Itest
Bill_chen
springmaven框架单元测试JUnit
Itest测试框架是TaoBao测试部门开发的一套单元测试框架,以Junit4为核心,
集合DbUnit、Unitils等主流测试框架,应该算是比较好用的了。
近期项目中用了下,有关itest的具体使用如下:
1.在Maven中引入itest框架:
<dependency>
<groupId>com.taobao.test</groupId&g
- 【Java多线程二】多路条件解决生产者消费者问题
bit1129
java多线程
package com.tom;
import java.util.LinkedList;
import java.util.Queue;
import java.util.concurrent.ThreadLocalRandom;
import java.util.concurrent.locks.Condition;
import java.util.concurrent.loc
- 汉字转拼音pinyin4j
白糖_
pinyin4j
以前在项目中遇到汉字转拼音的情况,于是在网上找到了pinyin4j这个工具包,非常有用,别的不说了,直接下代码:
import java.util.HashSet;
import java.util.Set;
import net.sourceforge.pinyin4j.PinyinHelper;
import net.sourceforge.pinyin
- org.hibernate.TransactionException: JDBC begin failed解决方案
bozch
ssh数据库异常DBCP
org.hibernate.TransactionException: JDBC begin failed: at org.hibernate.transaction.JDBCTransaction.begin(JDBCTransaction.java:68) at org.hibernate.impl.SessionImp
- java-并查集(Disjoint-set)-将多个集合合并成没有交集的集合
bylijinnan
java
import java.util.ArrayList;
import java.util.Arrays;
import java.util.HashMap;
import java.util.HashSet;
import java.util.Iterator;
import java.util.List;
import java.util.Map;
import java.ut
- Java PrintWriter打印乱码
chenbowen00
java
一个小程序读写文件,发现PrintWriter输出后文件存在乱码,解决办法主要统一输入输出流编码格式。
读文件:
BufferedReader
从字符输入流中读取文本,缓冲各个字符,从而提供字符、数组和行的高效读取。
可以指定缓冲区的大小,或者可使用默认的大小。大多数情况下,默认值就足够大了。
通常,Reader 所作的每个读取请求都会导致对基础字符或字节流进行相应的读取请求。因
- [天气与气候]极端气候环境
comsci
环境
如果空间环境出现异变...外星文明并未出现,而只是用某种气象武器对地球的气候系统进行攻击,并挑唆地球国家间的战争,经过一段时间的准备...最大限度的削弱地球文明的整体力量,然后再进行入侵......
那么地球上的国家应该做什么样的防备工作呢?
&n
- oracle order by与union一起使用的用法
daizj
UNIONoracleorder by
当使用union操作时,排序语句必须放在最后面才正确,如下:
只能在union的最后一个子查询中使用order by,而这个order by是针对整个unioning后的结果集的。So:
如果unoin的几个子查询列名不同,如
Sql代码
select supplier_id, supplier_name
from suppliers
UNI
- zeus持久层读写分离单元测试
deng520159
单元测试
本文是zeus读写分离单元测试,距离分库分表,只有一步了.上代码:
1.ZeusMasterSlaveTest.java
package com.dengliang.zeus.webdemo.test;
import java.util.ArrayList;
import java.util.List;
import org.junit.Assert;
import org.j
- Yii 截取字符串(UTF-8) 使用组件
dcj3sjt126com
yii
1.将Helper.php放进protected\components文件夹下。
2.调用方法:
Helper::truncate_utf8_string($content,20,false); //不显示省略号 Helper::truncate_utf8_string($content,20); //显示省略号
&n
- 安装memcache及php扩展
dcj3sjt126com
PHP
安装memcache tar zxvf memcache-2.2.5.tgz cd memcache-2.2.5/ /usr/local/php/bin/phpize (?) ./configure --with-php-confi
- JsonObject 处理日期
feifeilinlin521
javajsonJsonOjbectJsonArrayJSONException
写这边文章的初衷就是遇到了json在转换日期格式出现了异常 net.sf.json.JSONException: java.lang.reflect.InvocationTargetException 原因是当你用Map接收数据库返回了java.sql.Date 日期的数据进行json转换出的问题话不多说 直接上代码
&n
- Ehcache(06)——监听器
234390216
监听器listenerehcache
监听器
Ehcache中监听器有两种,监听CacheManager的CacheManagerEventListener和监听Cache的CacheEventListener。在Ehcache中,Listener是通过对应的监听器工厂来生产和发生作用的。下面我们将来介绍一下这两种类型的监听器。
- activiti 自带设计器中chrome 34版本不能打开bug的解决
jackyrong
Activiti
在acitivti modeler中,如果是chrome 34,则不能打开该设计器,其他浏览器可以,
经证实为bug,参考
http://forums.activiti.org/content/activiti-modeler-doesnt-work-chrome-v34
修改为,找到
oryx.debug.js
在最头部增加
if (!Document.
- 微信收货地址共享接口-终极解决
laotu5i0
微信开发
最近要接入微信的收货地址共享接口,总是不成功,折腾了好几天,实在没办法网上搜到的帖子也是骂声一片。我把我碰到并解决问题的过程分享出来,希望能给微信的接口文档起到一个辅助作用,让后面进来的开发者能快速的接入,而不需要像我们一样苦逼的浪费好几天,甚至一周的青春。各种羞辱、谩骂的话就不说了,本人还算文明。
如果你能搜到本贴,说明你已经碰到了各种 ed
- 关于人才
netkiller.github.com
工作面试招聘netkiller人才
关于人才
每个月我都会接到许多猎头的电话,有些猎头比较专业,但绝大多数在我看来与猎头二字还是有很大差距的。 与猎头接触多了,自然也了解了他们的工作,包括操作手法,总体上国内的猎头行业还处在初级阶段。
总结就是“盲目推荐,以量取胜”。
目前现状
许多从事人力资源工作的人,根本不懂得怎么找人才。处在人才找不到企业,企业找不到人才的尴尬处境。
企业招聘,通常是需要用人的部门提出招聘条件,由人
- 搭建 CentOS 6 服务器 - 目录
rensanning
centos
(1) 安装CentOS
ISO(desktop/minimal)、Cloud(AWS/阿里云)、Virtualization(VMWare、VirtualBox)
详细内容
(2) Linux常用命令
cd、ls、rm、chmod......
详细内容
(3) 初始环境设置
用户管理、网络设置、安全设置......
详细内容
(4) 常驻服务Daemon
- 【求助】mongoDB无法更新主键
toknowme
mongodb
Query query = new Query(); query.addCriteria(new Criteria("_id").is(o.getId())); &n
- jquery 页面滚动到底部自动加载插件集合
xp9802
jquery
很多社交网站都使用无限滚动的翻页技术来提高用户体验,当你页面滑到列表底部时候无需点击就自动加载更多的内容。下面为你推荐 10 个 jQuery 的无限滚动的插件:
1. jQuery ScrollPagination
jQuery ScrollPagination plugin 是一个 jQuery 实现的支持无限滚动加载数据的插件。
2. jQuery Screw
S