请问,在epoch2 的地方为什么折线上升,这样的结果对应的网络是不是很烂。
程序如下:
{/
%run plethora of tests
clear;
clc;
close all
%load the twonorm dataset
inputs=xlsread('4s_acceleration_input.xlsx','mean');
outputs=xlsread('4s_output.xlsx');
%modify so that training data is NxD and labels are Nx1, where N=#of
%examples, D=# of features
X = inputs';
Y = outputs';
All_error=[];%所有误差存储
%---------------------------------------------------
%原始数据
%---------------------------------------------------
%time=1;2;%数据是从以2s为间隔的30s内的数据
p=X;%输入数据,共15组,每组3个输入
t=Y;%输出数据,共15组,每组1个输出
%---------------------------------------------------
%数据归一化处理
%mapminmax函数默认将数据归一化到[-1,1],调用形式如下
%[y,ps] =%mapminmax(x,ymin,ymax)
%x需归化的数据输入
%ymin,ymax为需归化到的范围,不填默认为归化到[-1,1]
%y归一化后的样本数据
%ps处理设置,ps主要在结果反归一化中需要调用,或者使用同样的settings归一化另外一组数据
%---------------------------------------------------
[normInput,ps] = mapminmax(p);
[normTarget,ts] = mapminmax(t);
%---------------------------------------------------
%数据乱序,及分类处理
%将输入的15组数据的20%,即3组,用来作为测试数据;
% 样本的20%,即3组,用来作为变化数据;
%另外9组用来正常输入,用来训练;
%dividevec()用来重新随机抽取上述三种分类的数据,原来的顺序被打乱
%函数调用的语法
%[trainV,valV,testV] = dividevec(p,t,valPercent,testPercent)
%输入p为输入数据,t为输出数据
%valPercent为训练用的变化数据在总输入中的百分比
%testPercent为训练用的测试数据在总输入中的百分比
%输出trainV,valV,testV分别为按乱序及相应百分比,抽取得到的数据
%另外,打乱后的数据,p和t都是对应的,请放心使用
%---------------------------------------------------
testPercent = 0.20; % Adjust as desired
validatePercent = 0.20; % Adust as desired
[trainSamples,validateSamples,testSamples] = dividevec(normInput,normTarget,validatePercent,testPercent);
for j=1:200
%---------------------------------------------------
% 设置网络参数
%---------------------------------------------------
NodeNum1 = 20;% 隐层第一层节点数
NodeNum2=35; % 隐层第二层节点数
TypeNum = 1; % 输出维数
TF1 = 'purelin';
TF2 = 'purelin';
TF3 = 'tansig';
%各层传输函数,TF3为输出层传输函数
%如果训练结果不理想,可以尝试更改传输函数,以下这些是各类传输函数
%TF1 = 'tansig';TF2 = 'logsig';
%TF1 = 'logsig';TF2 = 'purelin';
%TF1 = 'tansig';TF2 = 'tansig';
%TF1 = 'logsig';TF2 = 'logsig';
%TF1 = 'purelin';TF2 = 'purelin';
net=newff(minmax(normInput),[NodeNum1,TypeNum],{TF1 TF2 TF3},'traingdx');%网络创建
%---------------------------------------------------
% 设置训练参数
%---------------------------------------------------
net.trainParam.epochs=10000;%训练次数设置
net.trainParam.goal=1e-25;%训练目标设置
net.trainParam.lr=0.01;%学习率设置,应设置为较少值,太大虽然会在开始加快收敛速度,但临近最佳点时,会产生动荡,而致使无法收敛
%---------------------------------------------------
% 指定训练参数
%---------------------------------------------------
% net.trainFcn = 'traingd'; % 梯度下降算法
% net.trainFcn = 'traingdm'; % 动量梯度下降算法
%
% net.trainFcn = 'traingda'; % 变学习率梯度下降算法
% net.trainFcn = 'traingdx'; % 变学习率动量梯度下降算法
%
% (大型网络的首选算法)
% net.trainFcn = 'trainrp'; % RPROP(弹性BP)算法,内存需求最小
%
% (共轭梯度算法)
% net.trainFcn = 'traincgf'; % Fletcher-Reeves修正算法
% net.trainFcn = 'traincgp'; % Polak-Ribiere修正算法,内存需求比Fletcher-Reeves修正算法略大
% net.trainFcn = 'traincgb'; % Powell-Beal复位算法,内存需求比Polak-Ribiere修正算法略大
%
% (大型网络的首选算法)
%net.trainFcn = 'trainscg'; % Scaled Conjugate Gradient算法,内存需求与Fletcher-Reeves修正算法相同,计算量比上面三种算法都小很多
% net.trainFcn = 'trainbfg'; % Quasi-Newton Algorithms - BFGS Algorithm,计算量和内存需求均比共轭梯度算法大,但收敛比较快
% net.trainFcn = 'trainoss'; % One Step Secant Algorithm,计算量和内存需求均比BFGS算法小,比共轭梯度算法略大
%
% (中型网络的首选算法)
%net.trainFcn = 'trainlm'; % Levenberg-Marquardt算法,内存需求最大,收敛速度最快
% net.trainFcn = 'trainbr'; % 贝叶斯正则化算法
%
% 有代表性的五种算法为:'traingdx','trainrp','trainscg','trainoss', 'trainlm'
net.trainfcn='traingdm';
[net,tr] = train(net,trainSamples.P,trainSamples.T,[],[],validateSamples,testSamples);
%---------------------------------------------------
% 训练完成后,就可以调用sim()函数,进行仿真了
%---------------------------------------------------
[normTrainOutput,Pf,Af,E,trainPerf] = sim(net,trainSamples.P,[],[],trainSamples.T);%正常输入的9组p数据,BP得到的结果t
[normValidateOutput,Pf,Af,E,validatePerf] = sim(net,validateSamples.P,[],[],validateSamples.T);%用作变量3的数据p,BP得到的结果t
[normTestOutput,Pf,Af,E,testPerf] = sim(net,testSamples.P,[],[],testSamples.T);%用作测试的3组数据p,BP得到的结果t
%---------------------------------------------------
% 仿真后结果数据反归一化,如果需要预测,只需将预测的数据P填入
% 将获得预测结果t
%---------------------------------------------------
trainOutput = mapminmax('reverse',normTrainOutput,ts);%正常输入的9组p数据,BP得到的归一化后的结果t
trainInsect = mapminmax('reverse',trainSamples.T,ts);%正常输入的9组数据t
validateOutput = mapminmax('reverse',normValidateOutput,ts);%用作变量3的数据p,BP得到的归一化的结果t
validateInsect = mapminmax('reverse',validateSamples.T,ts);%用作变量3的数据t
testOutput = mapminmax('reverse',normTestOutput,ts);%用作变量3组数据p,BP得到的归一化的结果t
testInsect = mapminmax('reverse',testSamples.T,ts);%用作变量3组数据t
%绝对误差计算
absTrainError = trainOutput-trainInsect;
absTestError = testOutput-testInsect;
error_sum=sqrt(absTestError(1).^2+absTestError(2).^2+absTestError(3).^2);
All_error=[All_error error_sum];
eps=0.3;%其为3组测试数据的标准差,或者每个数据偏差在一定范围内而判别
if ((abs(absTestError(1))<=0.1 )&(abs(absTestError(2))<=0.1)&(abs(absTestError(3))<=0.1)|(error_sum<=eps))
save('training_net.mat','net','tr');
break
end
j
end
j
Min_error_sqrt=min(All_error)
testOutput;
testInsect;
}
数据在附件里面
11.jpg
(34.38 KB, 下载次数: 15)
2014-2-18 14:19 上传
神经网络分类的performance图
22.jpg
(25.54 KB, 下载次数: 9)
2014-2-18 14:19 上传
神经网络分类的fail图
2014-2-18 14:24 上传
点击文件名下载附件
64 KB, 下载次数: 440
2014-2-18 14:24 上传
点击文件名下载附件
9.83 KB, 下载次数: 381