- Windows 安装 及解决 tvm 无法打开 源 文件 “dmlc/logging.h“
杜波超
windows
如果你在编译TVM时遇到`dmlc/logging.h`文件缺失的问题,很可能是因为在克隆TVM仓库时没有包含其子模块,而这些子模块(如`dmlc-core`)是通过Git管理的。解决步骤安装Git:如果你还没有安装Git,需要先安装它。根据你的操作系统选择合适的安装方法:Ubuntu/Debian:sudoapt-getinstallgitCentOS/Fedora:sudoyuminstall
- tvm交叉编译android opencl
极乐净土0822
androidtvmndk交叉编译opencl
模型编译:#encoding:utf-8importonnximportnumpyasnpimporttvmimporttvm.relayasrelayimportosfromtvm.contribimportndkonnx_model=onnx.load('mobilenet_v3_small.onnx')x=np.ones([1,3,224,224])input_name='input1'sh
- 一篇文章教你从入门到精通 Google 指纹验证功能
vivo互联网技术
本文首发于vivo互联网技术微信公众号链接:https://mp.weixin.qq.com/s/EHomjBy4Tvm8u962J6ZgsA作者:SunDaxiangGoogle从Android6.0开始,提供了开放的指纹识别相关API,通过此篇文章可以帮助开发者接入指纹验证的基础功能,并且提供了系统应用基于指纹验证的功能扩展,如指纹验证登录功能核心流程图和关键代码分析。一、基础篇从Androi
- Vitis AI 集成
人工智能
更多TVM中文文档可访问→ApacheTVM是一个端到端的深度学习编译框架,适用于CPU、GPU和各种机器学习加速芯片。IApacheTVM中文站VitisAI是用在Xilinx平台(包括边缘设备和Alveo卡)上进行硬件加速AI推理的Xilinx开发堆栈。它由优化的IP、工具、库、模型和示例设计组成。在设计时兼顾高效率和易用性,充分发挥了XilinxFPGA和ACAP上AI加速的潜力。TVM中当
- Vitis AI 集成
HyperAI超神经
TVM人工智能TVM
更多TVM中文文档可访问→ApacheTVM是一个端到端的深度学习编译框架,适用于CPU、GPU和各种机器学习加速芯片。IApacheTVM中文站**VitisAI**是用在Xilinx平台(包括边缘设备和Alveo卡)上进行硬件加速AI推理的Xilinx开发堆栈。它由优化的IP、工具、库、模型和示例设计组成。在设计时兼顾高效率和易用性,充分发挥了XilinxFPGA和ACAP上AI加速的潜力。T
- CFA一级前导:: 计算器使用教程1~7 第2+3节
weixin_52505631
CFAI级职场和发展学习方法金融其他笔记
Time-Value-of-MoneyandAmortizationWorksheets货币的时间价值与摊销表00:48:12点击观看1.用TVM功能:equalandregularcash相等且有规律的现金流按[N][I/Y][PV][PMT][FV]中任5个键中的1个已知其中4个变量,才能求出第5个变量TVM功能Variable中文KeyNumberofperiods(N)期数[N]Inter
- Relay Arm® 计算库集成
HyperAI超神经
TVMarm开发
介绍Arm计算库(ACL)是一个开源项目,它为ArmCPU和GPU提供了加速内核。目前,集成将算子迁移到ACL以在库中使用手工制作的汇编程序例程。通过将选择算子从Relay计算图迁移到ACL,可在此类设备上实现性能提升。安装Arm计算库安装Arm计算库前,了解要构建的架构非常重要。一种方法是使用lscpu,并查找CPU的“模型名称”,然后,可以使用它通过在线查看来确定架构。TVM目前只支持v21.
- TVM安装
血_影
ToolsTVM
为什么选择TVM为提升深度学习模型的推理效率,设备平台制造商针对自己的平台推出优化的推理引擎,例如NAVIDA的tensorRT,Intel的OpenVINO,Tencent针对移动端应用推出NCNN等。目前,深度学习模型应用广泛,在服务端和移动端都有应用,甚至于特殊的嵌入式场景想,它们都有加速模型推理的需求。TVM介是从深度学习编译器的角度来做推理引擎,目前技术领域还比较新,具体技术细节以后有机
- 【TEE】PENGLAI TEE
Destiny
可信执行环境TEE可信计算技术安全架构安全risc-v
蓬莱TEE介绍蓬莱TEE论文蓬莱TEE文档蓬莱TEE项目文章目录1简介2PengLai于2021RISC-V中国峰会2.1TEE/enclave有什么用蓬莱TEE3蓬莱文档3.1教程(蓬莱TVM)3.1.1运行飞地程序helloworld3.1.2enclave-enclave和enclave-host之间的IPC3.1.3影子飞地3.1.4服务器enclave3.1.5证明3.1.6enclav
- 机器学习系统或者SysML&DL笔记
AAI机器之心
机器学习笔记人工智能pytorch深度学习python
在使用过TVM、TensorRT等优秀的机器学习编译优化系统以及Pytorch、Keras等深度学习框架后,总觉得有必要从理论上对这些系统进行一些分析,虽然说在实践中学习是最快最直接的(指哪儿打哪儿、不会哪儿查哪儿),但恶补一些关于系统设计的一些知识还是非常有用了,权当是巩固一些基础了。因此,有必要学习了解一下机器学习系统的设计和思想。以下是本系列文章的笔记来源:CSE599W:Systemsfo
- 使用docker镜像快速构建TVM
早睡的叶子
AI编译器docker容器运维
TVMdocekr编译文章目录TVMdocekr编译使用云镜像使用docker进行本地构建使用云镜像下载docker镜像如果对docker指令不熟悉可以查阅:dockercli命令行APITVMdockerhub镜像dockerpulltlcpack/ci-cpu:20230604-060130-0af9ff90e运行containerdockerrun--name2306_tvm_cpu-it-
- 打破硬件壁垒:TVM 助力 AI技术跨平台部署
程序边界
人工智能
文章目录《TVM编译器原理与实践》编辑推荐内容简介作者简介目录前言/序言获取方式随着人工智能(ArtificialIntelligence,AI)在全世界信息产业中的广泛应用,深度学习模型已经成为推动AI技术革命的关键。TensorFlow、PyTorch、MXNet、Caffe等深度学习模型已经在服务器级GPU上取得了显著的成果。然而,大多数现有的系统框架只针对小范围的服务器级GPU进行过优化,
- [zz]TVM之神经网络Auto-Tuning
crazyhank
最近在研究TVM项目,这篇文章值得一读,对于搞神经网络性能优化的同学来说,很有价值:(http://closure11.com/%E5%85%B6%E4%BB%96/2018/12/20/TVM%E4%B9%8BAuto-Tuning/)
- 2024三掌柜赠书活动第一期:TVM编译器原理与实践
三掌柜666
人工智能
目录前言TVM编译器的实现过程关于《TVM编译器原理与实践》编辑推荐内容简介作者简介图书目录书中前言/序言《TVM编译器原理与实践》全书速览结束语前言随着人工智能的发展,计算机视觉、自然语言处理和语音识别等领域的需求不断增加。为了更好地满足这些需求,许多深度学习框架被开发出来,其中TVM(TVirtualMachine)是一种优秀的编译器,能够将深度学习模型编译为高效的机器码。而且TVM编译器的核
- RK3588-TVM-GPU推理模型
呆呆珝
推理框架人工智能linux前端
1.前言之前的博客已经在RK3588上安装了tvm的mali-gpu的版本,我们整理一下思路,本文将从模型的转换和调用两个方面进行讲解,tvm使用的是0.10版本,模型和代码也都是tvm官方的案例。2.onnx模型转换将ONNX格式的ResNet50-v2模型转换为TVMRuntime支持的形式,并将其编译为一个共享库文件。以下是对代码的解释:1.导入库和模块importonnximporttvm
- win10 安装tvm(aarch64进行推理)
SongpingWang
TensorRT/TVMc++python
文章目录准备一、编译llvm二、编译tvm三、测试tvm准备llvm下载:gitclone-bv0.14.0--depth=1--recursivehttp://github.com/apache/tvmtvmtvm下载:https://codeload.github.com/apache/tvm/zip/refs/tags/v0.14.0E:\TVM_LLVM├─llvm-project-llv
- RK3588安装TVM-GPU版本
呆呆珝
推理框架嵌入式硬件opencv目标检测计算机视觉python
1.前言RK3588还有相应的GPU可以使用,我们也可以配置相关的环境,进行GPU的使用2.RK3588的GPU介绍Mali-G610是Arm公司开发的第三代Valhall架构的GPU。它于2022年7月发布,面向中端和高端移动设备。Mali-G610采用Armv9架构,具有10个核心,每个核心都有128个FP32ALU。它还支持FP16、INT8和INT4计算,以及硬件加速的AI功能。Mali-
- RK3588安装TVM-CPU版本
呆呆珝
推理框架人工智能深度学习
1.背景TVM是一个开源的机器学习编译器栈,用于优化和编译深度学习模型,以在各种硬件平台上实现高效性能。以下是关于TVM的详细介绍:TVM的目标是将深度学习模型的优化和编译过程自动化,以便开发人员可以轻松地将其模型部署到各种硬件平台上,包括CPU、GPU、FPGA等。TVM的核心功能包括自动优化、代码生成和硬件抽象。它可以根据硬件平台的特点自动调整模型的计算图,生成高效的代码,并通过硬件抽象层与底
- 探索“超级服务器” TON:SDK 应用与开发入门
TinTin Land
TinTinMeetingweb3TONtelegram
TON是一个由多个组件构成的去中心化和开放的互联网平台,聚焦于实现广泛的跨链互操作性,同时在高可扩展性的安全框架中运作。TON区块链被设计为分布式超级计算机或“超级服务器(superserver)”,旨在提供各种产品和服务,以促进去中心化的发展。从TVM基础到合约开发语言,TON区块链的技术优势与生态发展有何特点?基于TON生态开发的技术工具又将赋予开发者怎样高效、个性的应用体验?第25期TinT
- 将VM放入TVM:Relay虚拟机
zxros10
TVM官方文档翻译人工智能
Relay是一种新的程序表示方法,它实现了大量机器学习程序的表示和优化。不幸的是,在引入支持更有表现力的程序集的同时,我们也引入了一些新的执行上的挑战。Relay的解释器可以执行完整的语言,但是有明显的限制,这使得它不适合生产部署。它被构造成通过遍历AST来执行程序的低效解释器。这种方法在概念上很简单,但效率很低,因为AST遍历严重依赖于间接性。在编译动态代码方面还有更多的挑战,比如动态调度和内存
- TVM(端到端的优化栈)概述
wangbowj123
深度学习深度学习从入门到放弃TVM深度学习GPU优化人工智能
陈天奇团队宣布推出TVM,在微博上表示,「我们今天发布了TVM,和NNVM一起组成深度学习到各种硬件的完整优化工具链,支持手机,cuda,opencl,metal,javascript以及其它各种后端。欢迎对于深度学习,编译原理,高性能计算,硬件加速有兴趣的同学一起加入dmlc推动领导开源项目社区。」大多数现有系统针对窄范围的服务器级GPU进行优化,且需要在包括手机、IOT设备及专用加速器上部署大
- 深度学习模型编译框架TVM概述
Linux基金会AI&Data基金会
算法数据结构大数据编程语言python
★在任意深度学习的应用场景落地一个模型/算法时,需要经历两个基本步骤:1.根据数据生产一个模型的训练步骤;2.将生产出的模型部署到目标设备上执行服务的推理步骤。训练步骤目前基本由Tensorflow、PyTorch、Keras、MXNet等主流框架主导,同样的,推理步骤目前也处在“百家争鸣”的状态。”TVM是什么?TVM是一款开源的、端到端的深度学习模型编译框架,用于优化深度学习模型在CPU、GP
- AI编译器及TVM概述
WRichards
人工智能
AI编译器AI编译器有许多不同的类型和品牌,以下是一些常见的AI编译器:TensorFlow:谷歌开发的深度学习框架,它包含了一个用于优化和编译TensorFlow模型的编译器。PyTorch:一个基于Python的开源深度学习框架,也提供了一个编译器用于执行和优化PyTorch模型。ONNX:开放神经网络交换的标准,它定义了一个中间表示格式,允许不同的深度学习框架之间交换和执行模型。TVM:一个
- TVM Ubuntu20安装
shelgi
框架使用python各种填坑ubuntu人工智能TVMpytorchpython
TVMUbuntu20安装最近和大佬聊天,谈到对于现在项目上部署的一些问题,总觉得各大部署框架对“自家”产品都支持的很好,但是对其他平台可能效果一般.于是聊到通用的部署框架TVM,可能对特定的设备优化不如那些针对“自家”产品优化的好,但是普适性来说还是非常好的,起码很多时候不会因为换了一个硬件平台就得重复编译优化.况且现在TVM还加入了Tensorrt的算子优化,基本上和纯Tensorrt部署性能
- Ubuntu20.04部署TVM流程及编译优化模型示例
Briwisdom
#技术教程linuxllvmclangtvm
前言:记录自己安装TVM的流程,以及一个简单的利用TVM编译模型并执行的示例。1,官网下载TVM源码gitclone--recursivehttps://github.com/apache/tvmgitsubmoduleinitgitsubmoduleupdate顺便完成准备工作,比如升级cmake版本需要3.18及以上版本。还有如下库:sudoapt-getupdatesudoapt-getin
- esp32-s3部署yolox_nano进行目标检测
咚咚锵咚咚锵
模型落地人工智能目标检测嵌入式硬件
ESP32-S3部署yolox_nano进行目标检测一、生成模型部署项目01环境02配置TVM包03模型量化3.1预处理3.2量化04生成项目二、烧录程序手上的是ESP32-S3-WROOM-1N8R8芯片,整个链路跑通了,但是识别速度太慢了,20秒一张图,所以暂时还没打算进一步优化程序。一、生成模型部署项目官方指导文件:使用TVM自动生成模型部署项目先下载onnx模型:yolox_nano.on
- TVM 0.9 在 ubuntu(任意版本)上的安装(简单且保姆级!)
哥谭最性感的下巴
TVMubuntupython深度学习人工智能pytorch
近一年来尝试过TVM在ubuntu16.04、ubuntu18.04、ubuntu20.04以及windows上的安装,也看了官方教程和网上各种博客,踩坑无数,现在总结在Ubuntu上踩坑几率最小的安装流程如下。(建议学习TVM一开始就在ubuntu上进行,windows上TVM从安装到运行都会有意想不到的bug,我曾经遇到过同样的代码在windows上报奇怪的错而在Ubuntu上就不会)以TVM
- Ubuntu20.04上编译安装TVM
ltshan139
TVMTVMCMAKELLVM
本文主要讲述如何在ubuntu20.04平台上编译TVM代码并在python中importtvm成功。源代码下载:gitclone--recursivehttps://github.com/apache/tvmtvm平台环境升级:1)sudoapt-getupdate2)sudoapt-getinstall-ypython3python3-devpython3-setuptoolsgcclibti
- 深度学习AI编译器-TVM简介
WRichards
人工智能深度学习人工智能
1.为什么需要深度学习编译器深度学习编译器主要为解决不同框架下训练的模型部署到指定的某些设备上时所遇到的一系列复杂的问题,即将各种深度学习训练框架的模型部署到各种硬件所面临的问题;首先深度学习领域,从训练框架看,当前可选的框架有pytorch、TensorFlow、Mxnet、paddle,oneflow、caffe/caffe2、mindspore等,具体选择哪个,不尽相同,但如果项目要部署落地
- TVM中tensorflow pb格式模型加载过程学习
编程小猪
1、通过tf将pb模型文件加载后生成GraphDef这里需要注意,目前tvm只支持加载forzon的PB模型。withtf.gfile.FastGFile(FLAGS.frozen_model_path,'rb')asf:graph_def=tf.compat.v1.GraphDef()graph_def.ParseFromString(f.read())graph=tf.import_graph
- 设计模式介绍
tntxia
设计模式
设计模式来源于土木工程师 克里斯托弗 亚历山大(http://en.wikipedia.org/wiki/Christopher_Alexander)的早期作品。他经常发表一些作品,内容是总结他在解决设计问题方面的经验,以及这些知识与城市和建筑模式之间有何关联。有一天,亚历山大突然发现,重复使用这些模式可以让某些设计构造取得我们期望的最佳效果。
亚历山大与萨拉-石川佳纯和穆雷 西乐弗斯坦合作
- android高级组件使用(一)
百合不是茶
androidRatingBarSpinner
1、自动完成文本框(AutoCompleteTextView)
AutoCompleteTextView从EditText派生出来,实际上也是一个文本编辑框,但它比普通编辑框多一个功能:当用户输入一个字符后,自动完成文本框会显示一个下拉菜单,供用户从中选择,当用户选择某个菜单项之后,AutoCompleteTextView按用户选择自动填写该文本框。
使用AutoCompleteTex
- [网络与通讯]路由器市场大有潜力可挖掘
comsci
网络
如果国内的电子厂商和计算机设备厂商觉得手机市场已经有点饱和了,那么可以考虑一下交换机和路由器市场的进入问题.....
这方面的技术和知识,目前处在一个开放型的状态,有利于各类小型电子企业进入
&nbs
- 自写简单Redis内存统计shell
商人shang
Linux shell统计Redis内存
#!/bin/bash
address="192.168.150.128:6666,192.168.150.128:6666"
hosts=(${address//,/ })
sfile="staticts.log"
for hostitem in ${hosts[@]}
do
ipport=(${hostitem
- 单例模式(饿汉 vs懒汉)
oloz
单例模式
package 单例模式;
/*
* 应用场景:保证在整个应用之中某个对象的实例只有一个
* 单例模式种的《 懒汉模式》
* */
public class Singleton {
//01 将构造方法私有化,外界就无法用new Singleton()的方式获得实例
private Singleton(){};
//02 申明类得唯一实例
priva
- springMvc json支持
杨白白
json springmvc
1.Spring mvc处理json需要使用jackson的类库,因此需要先引入jackson包
2在spring mvc中解析输入为json格式的数据:使用@RequestBody来设置输入
@RequestMapping("helloJson")
public @ResponseBody
JsonTest helloJson() {
- android播放,掃描添加本地音頻文件
小桔子
最近幾乎沒有什麽事情,繼續鼓搗我的小東西。想在項目中加入一個簡易的音樂播放器功能,就像華為p6桌面上那麼大小的音樂播放器。用過天天動聽或者QQ音樂播放器的人都知道,可已通過本地掃描添加歌曲。不知道他們是怎麼實現的,我覺得應該掃描設備上的所有文件,過濾出音頻文件,每個文件實例化為一個實體,記錄文件名、路徑、歌手、類型、大小等信息。具體算法思想,
- oracle常用命令
aichenglong
oracledba常用命令
1 创建临时表空间
create temporary tablespace user_temp
tempfile 'D:\oracle\oradata\Oracle9i\user_temp.dbf'
size 50m
autoextend on
next 50m maxsize 20480m
extent management local
- 25个Eclipse插件
AILIKES
eclipse插件
提高代码质量的插件1. FindBugsFindBugs可以帮你找到Java代码中的bug,它使用Lesser GNU Public License的自由软件许可。2. CheckstyleCheckstyle插件可以集成到Eclipse IDE中去,能确保Java代码遵循标准代码样式。3. ECLemmaECLemma是一款拥有Eclipse Public License许可的免费工具,它提供了
- Spring MVC拦截器+注解方式实现防止表单重复提交
baalwolf
spring mvc
原理:在新建页面中Session保存token随机码,当保存时验证,通过后删除,当再次点击保存时由于服务器端的Session中已经不存在了,所有无法验证通过。
1.新建注解:
? 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
- 《Javascript高级程序设计(第3版)》闭包理解
bijian1013
JavaScript
“闭包是指有权访问另一个函数作用域中的变量的函数。”--《Javascript高级程序设计(第3版)》
看以下代码:
<script type="text/javascript">
function outer() {
var i = 10;
return f
- AngularJS Module类的方法
bijian1013
JavaScriptAngularJSModule
AngularJS中的Module类负责定义应用如何启动,它还可以通过声明的方式定义应用中的各个片段。我们来看看它是如何实现这些功能的。
一.Main方法在哪里
如果你是从Java或者Python编程语言转过来的,那么你可能很想知道AngularJS里面的main方法在哪里?这个把所
- [Maven学习笔记七]Maven插件和目标
bit1129
maven插件
插件(plugin)和目标(goal)
Maven,就其本质而言,是一个插件执行框架,Maven的每个目标的执行逻辑都是由插件来完成的,一个插件可以有1个或者几个目标,比如maven-compiler-plugin插件包含compile和testCompile,即maven-compiler-plugin提供了源代码编译和测试源代码编译的两个目标
使用插件和目标使得我们可以干预
- 【Hadoop八】Yarn的资源调度策略
bit1129
hadoop
1. Hadoop的三种调度策略
Hadoop提供了3中作业调用的策略,
FIFO Scheduler
Fair Scheduler
Capacity Scheduler
以上三种调度算法,在Hadoop MR1中就引入了,在Yarn中对它们进行了改进和完善.Fair和Capacity Scheduler用于多用户共享的资源调度
2. 多用户资源共享的调度
- Nginx使用Linux内存加速静态文件访问
ronin47
Nginx是一个非常出色的静态资源web服务器。如果你嫌它还不够快,可以把放在磁盘中的文件,映射到内存中,减少高并发下的磁盘IO。
先做几个假设。nginx.conf中所配置站点的路径是/home/wwwroot/res,站点所对应文件原始存储路径:/opt/web/res
shell脚本非常简单,思路就是拷贝资源文件到内存中,然后在把网站的静态文件链接指向到内存中即可。具体如下:
- 关于Unity3D中的Shader的知识
brotherlamp
unityunity资料unity教程unity视频unity自学
首先先解释下Unity3D的Shader,Unity里面的Shaders是使用一种叫ShaderLab的语言编写的,它同微软的FX文件或者NVIDIA的CgFX有些类似。传统意义上的vertex shader和pixel shader还是使用标准的Cg/HLSL 编程语言编写的。因此Unity文档里面的Shader,都是指用ShaderLab编写的代码,然后我们来看下Unity3D自带的60多个S
- CopyOnWriteArrayList vs ArrayList
bylijinnan
java
package com.ljn.base;
import java.util.ArrayList;
import java.util.Iterator;
import java.util.List;
import java.util.concurrent.CopyOnWriteArrayList;
/**
* 总述:
* 1.ArrayListi不是线程安全的,CopyO
- 内存中栈和堆的区别
chicony
内存
1、内存分配方面:
堆:一般由程序员分配释放, 若程序员不释放,程序结束时可能由OS回收 。注意它与数据结构中的堆是两回事,分配方式是类似于链表。可能用到的关键字如下:new、malloc、delete、free等等。
栈:由编译器(Compiler)自动分配释放,存放函数的参数值,局部变量的值等。其操作方式类似于数据结构中
- 回答一位网友对Scala的提问
chenchao051
scalamap
本来准备在私信里直接回复了,但是发现不太方便,就简要回答在这里。 问题 写道 对于scala的简洁十分佩服,但又觉得比较晦涩,例如一例,Map("a" -> List(11,111)).flatMap(_._2),可否说下最后那个函数做了什么,真正在开发的时候也会如此简洁?谢谢
先回答一点,在实际使用中,Scala毫无疑问就是这么简单。
- mysql 取每组前几条记录
daizj
mysql分组最大值最小值每组三条记录
一、对分组的记录取前N条记录:例如:取每组的前3条最大的记录 1.用子查询: SELECT * FROM tableName a WHERE 3> (SELECT COUNT(*) FROM tableName b WHERE b.id=a.id AND b.cnt>a. cnt) ORDER BY a.id,a.account DE
- HTTP深入浅出 http请求
dcj3sjt126com
http
HTTP(HyperText Transfer Protocol)是一套计算机通过网络进行通信的规则。计算机专家设计出HTTP,使HTTP客户(如Web浏览器)能够从HTTP服务器(Web服务器)请求信息和服务,HTTP目前协议的版本是1.1.HTTP是一种无状态的协议,无状态是指Web浏览器和Web服务器之间不需要建立持久的连接,这意味着当一个客户端向服务器端发出请求,然后We
- 判断MySQL记录是否存在方法比较
dcj3sjt126com
mysql
把数据写入到数据库的时,常常会碰到先要检测要插入的记录是否存在,然后决定是否要写入。
我这里总结了判断记录是否存在的常用方法:
sql语句: select count ( * ) from tablename;
然后读取count(*)的值判断记录是否存在。对于这种方法性能上有些浪费,我们只是想判断记录记录是否存在,没有必要全部都查出来。
- 对HTML XML的一点认识
e200702084
htmlxml
感谢http://www.w3school.com.cn提供的资料
HTML 文档中的每个成分都是一个节点。
节点
根据 DOM,HTML 文档中的每个成分都是一个节点。
DOM 是这样规定的:
整个文档是一个文档节点
每个 HTML 标签是一个元素节点
包含在 HTML 元素中的文本是文本节点
每一个 HTML 属性是一个属性节点
注释属于注释节点
Node 层次
- jquery分页插件
genaiwei
jqueryWeb前端分页插件
//jquery页码控件// 创建一个闭包 (function($) { // 插件的定义 $.fn.pageTool = function(options) { var totalPa
- Mybatis与Ibatis对照入门于学习
Josh_Persistence
mybatisibatis区别联系
一、为什么使用IBatis/Mybatis
对于从事 Java EE 的开发人员来说,iBatis 是一个再熟悉不过的持久层框架了,在 Hibernate、JPA 这样的一站式对象 / 关系映射(O/R Mapping)解决方案盛行之前,iBaits 基本是持久层框架的不二选择。即使在持久层框架层出不穷的今天,iBatis 凭借着易学易用、
- C中怎样合理决定使用那种整数类型?
秋风扫落叶
c数据类型
如果需要大数值(大于32767或小于32767), 使用long 型。 否则, 如果空间很重要 (如有大数组或很多结构), 使用 short 型。 除此之外, 就使用 int 型。 如果严格定义的溢出特征很重要而负值无关紧要, 或者你希望在操作二进制位和字节时避免符号扩展的问题, 请使用对应的无符号类型。 但是, 要注意在表达式中混用有符号和无符号值的情况。
&nbs
- maven问题
zhb8015
maven问题
问题1:
Eclipse 中 新建maven项目 无法添加src/main/java 问题
eclipse创建maevn web项目,在选择maven_archetype_web原型后,默认只有src/main/resources这个Source Floder。
按照maven目录结构,添加src/main/ja
- (二)androidpn-server tomcat版源码解析之--push消息处理
spjich
javaandrodipn推送
在 (一)androidpn-server tomcat版源码解析之--项目启动这篇中,已经描述了整个推送服务器的启动过程,并且把握到了消息的入口即XmppIoHandler这个类,今天我将继续往下分析下面的核心代码,主要分为3大块,链接创建,消息的发送,链接关闭。
先贴一段XmppIoHandler的部分代码
/**
* Invoked from an I/O proc
- 用js中的formData类型解决ajax提交表单时文件不能被serialize方法序列化的问题
中华好儿孙
JavaScriptAjaxWeb上传文件FormData
var formData = new FormData($("#inputFileForm")[0]);
$.ajax({
type:'post',
url:webRoot+"/electronicContractUrl/webapp/uploadfile",
data:formData,
async: false,
ca
- mybatis常用jdbcType数据类型
ysj5125094
mybatismapperjdbcType
MyBatis 通过包含的jdbcType
类型
BIT FLOAT CHAR