遗传算法 python

代码:

import numpy as np


# ---------------定义目标函数-------------------
def f(x, y):
    return 3 * (1 - x) ** 2 * np.exp(-(x ** 2) - (y + 1) ** 2) - 10 * (x / 5 - x ** 3 - y ** 5) * np.exp(
        -x ** 2 - y ** 2) - 1 / 3 ** np.exp(-(x + 1) ** 2 - y ** 2)


# ---------------DNA解码(计算x,y)-------------
def translate_DNA(animal):  # 解码种群的DNA
    def DNA2t10(DNA):  # 带x, y范围的转换
        # pop: (POP_SIZE, DNA_SIZE) * (DNA_SIZE, 1) --> (POP_SIZE, 1)完成解码
        DNA = np.expand_dims(DNA, 0)
        y = DNA.dot(2 ** np.arange(DNA_bit)[::-1]) / float(2 ** DNA_bit - 1) * (Y_BOUND[1] - Y_BOUND[0]) + Y_BOUND[0]
        return y

    DNA_result = []
    for i in range(0, DNA_bit * DNA_num, DNA_bit):
        DNA = animal[i:i + DNA_bit]
        translated_DNA = DNA2t10(DNA)
        DNA_result.append(translated_DNA)
    return DNA_result


# ------------------计算适应度(计算误差,考虑定义域)------------
def get_fitness(animals):  # 计算种群各个部分的适应度
    fitness_score = np.zeros(len(animals))
    for i in range(len(animals)):
        x, y = translate_DNA(animals[i])
        fitness_score[i] = f(x, y)
    fitness_score = (fitness_score - np.min(fitness_score)) + 1e-5
    return fitness_score


# -------------适者生存(挑选误差较小的答案)---------------
# 根据之前的适应度的结果,误差越小适应度大,可以转换为概率,因此被留下的概率也就越大。
# 轮盘赌法
def select_animal(animals, fitness):  # 按照适应度选择留下的种群
    idx = np.random.choice(np.arange(animal_num), size=animal_num, replace=True, p=(fitness) / (fitness.sum() + 1e-8))
    return animals[idx]


# -----生殖、变异(更改部分二进制位,取反部分二进制位,可能生成误差更小的答案)--------
def variation(children, variation_rate, per_gene_variation=True):  # 模拟编译
    """
    Args:
        children: 交叉后的基因
        variation_rate: 突变概率
        per_gene_variation: 是否逐个基因点突变
    Returns:
    """
    if per_gene_variation:
        gene_size = len(children)
        for i in range(gene_size):
            if np.random.rand() < variation_rate:  # 以MUTATION_RATE的概率进行变异
                children[i] = children[i] ^ 1  # 这一位取反
        return children
    else:
        if np.random.rand() < variation_rate:  # 以MUTATION_RATE的概率进行变异
            mutate_point = np.random.randint(0, DNA_bit * 2)  # 随机产生一个实数,代表要变异基因的位置
            children[mutate_point] = children[mutate_point] ^ 1  # 这一位取反
        return children


def crossover_and_variation(animals, cross_rate, is_randomise=True):  # 模拟生殖过程(包括交配和变异)
    new_animals = []
    for father in animals:
        child = father  # 选择父亲
        if np.random.rand() < cross_rate:  # 产生子代时不是必然发生交叉,而是以一定的概率发生交叉
            mother = animals[np.random.randint(animal_num)]  # 再选择母亲
            if is_randomise:
                cross_points = np.random.randint(low=0, high=2, size=DNA_bit * DNA_num)  # 随机产生交叉的点
                index = np.argwhere(cross_points == 1)  # 找到交叉点
                child[index] = mother[index]  # 交叉互换,模拟生殖
            else:
                cross_points = np.random.randint(low=0, high=DNA_bit * 2)  # 随机产生交叉的点
                child[cross_points:] = mother[cross_points:]  # 孩子得到位于交叉点后的母亲的基因
        variation(child, variation_rate)  # 变异
        new_animals.append(child)
    return np.array(new_animals)


def get_result(animals):  # 获取结果
    fitness = get_fitness(animals)
    max_fitness_index = np.argmax(fitness)
    print("max_fitness:", fitness[max_fitness_index])
    x, y = translate_DNA(animals[max_fitness_index])
    print("最优的基因型:", animals[max_fitness_index])
    print("x: {} y: {} 函数值: {}".format(x, y, f(x, y)))
    return


if __name__ == '__main__':
    # -----------初始化参数-----------------
    DNA_bit = 13  # 一个DNA的二进制位数,(第一维表示符号位)
    Int_bit = 2  # DNA_bit-1(符号位bit)之后整数占的bit位
    DNA_num = 2  # DNA的个数
    animal_num = 200  # 开始种群的数量
    cross_rate = 0.8  # 生殖交叉概率
    variation_rate = 0.005  # 变异的概率
    generator_n = 50  # 种群演变的次数
    X_BOUND = [-3, 3]  # x取值范围
    Y_BOUND = [-3, 3]  # y取值范围

    # 初始化种群,需要判断开始的种群是否符合值域
    animals = np.array([np.random.randint(0, 2, size=(DNA_bit * DNA_num)) for i in range(animal_num)])

    # 模拟进化选择generator_n轮
    for i in range(generator_n):
        fitness_score = get_fitness(animals)
        selected_animals = select_animal(animals, fitness_score)
        animals = crossover_and_variation(selected_animals, cross_rate)

        print("第 {} 次迭代".format(i))
        get_result(animals)

带交互模式的代码:

import numpy as np
import matplotlib.pyplot as plt
from matplotlib import cm
from mpl_toolkits.mplot3d import Axes3D

# ---------------定义目标函数-------------------
def f(x, y):
    return 3 * (1 - x) ** 2 * np.exp(-(x ** 2) - (y + 1) ** 2) - 10 * (x / 5 - x ** 3 - y ** 5) * np.exp(
        -x ** 2 - y ** 2) - 1 / 3 ** np.exp(-(x + 1) ** 2 - y ** 2)

# ---------------DNA解码(计算x,y)-------------
def translateDNA(pop):  # pop表示种群矩阵,一行表示一个二进制编码表示的DNA,矩阵的行数为种群数目
    x_pop = pop[:, 1::2]  # 奇数列表示X
    y_pop = pop[:, ::2]  # 偶数列表示y

    # pop:(POP_SIZE,DNA_SIZE)*(DNA_SIZE,1) --> (POP_SIZE,1)
    x = x_pop.dot(2 ** np.arange(DNA_bit)[::-1]) / float(2 ** DNA_bit - 1) * (X_BOUND[1] - X_BOUND[0]) + X_BOUND[0]
    y = y_pop.dot(2 ** np.arange(DNA_bit)[::-1]) / float(2 ** DNA_bit - 1) * (Y_BOUND[1] - Y_BOUND[0]) + Y_BOUND[0]
    return x, y

# ------------------计算适应度(计算误差,考虑定义域)------------
def get_fitness(pop):
    x, y = translateDNA(pop)
    pred = f(x, y)
    # 减去最小的适应度是为了防止适应度出现负数,通过这一步fitness的范围为[0, np.max(pred)-np.min(pred)],
    # 最后在加上一个很小的数防止出现为0的适应度
    return (pred - np.min(pred)) + 1e-5

# -------------适者生存(挑选误差较小的答案)---------------
# 根据之前的适应度的结果,误差越小适应度大,可以转换为概率,因此被留下的概率也就越大。
# 轮盘赌法
def select_animal(animals, fitness):  # 按照适应度选择留下的种群
    idx = np.random.choice(np.arange(animal_num), size=animal_num, replace=True, p=(fitness) / (fitness.sum() + 1e-8))
    return animals[idx]

# -----生殖、变异(更改部分二进制位,取反部分二进制位,可能生成误差更小的答案)--------
def variation(children, variation_rate, per_gene_variation=True):  # 模拟编译
    """
    Args:
        children: 交叉后的基因
        variation_rate: 突变概率
        per_gene_variation: 是否逐个基因点突变
    Returns:
    """
    if per_gene_variation:
        gene_size = len(children)
        for i in range(gene_size):
            if np.random.rand() < variation_rate:  # 以MUTATION_RATE的概率进行变异
                children[i] = children[i] ^ 1  # 这一位取反
        return children
    else:
        if np.random.rand() < variation_rate:  # 以MUTATION_RATE的概率进行变异
            mutate_point = np.random.randint(0, DNA_bit * 2)  # 随机产生一个实数,代表要变异基因的位置
            children[mutate_point] = children[mutate_point] ^ 1  # 这一位取反
        return children

def crossover_and_variation(animals, cross_rate, is_randomise=True):  # 模拟生殖过程(包括交配和变异)
    new_animals = []
    for father in animals:
        child = father  # 选择父亲
        if np.random.rand() < cross_rate:  # 产生子代时不是必然发生交叉,而是以一定的概率发生交叉
            mother = animals[np.random.randint(animal_num)]  # 再选择母亲
            if is_randomise:
                cross_points = np.random.randint(low=0, high=2, size=DNA_bit * DNA_num)  # 随机产生交叉的点
                index = np.argwhere(cross_points == 1)  # 找到交叉点
                child[index] = mother[index]  # 交叉互换,模拟生殖
            else:
                cross_points = np.random.randint(low=0, high=DNA_bit * 2)  # 随机产生交叉的点
                child[cross_points:] = mother[cross_points:]  # 孩子得到位于交叉点后的母亲的基因
        variation(child, variation_rate)  # 变异
        new_animals.append(child)
    return np.array(new_animals)

def get_result(animals):  # 获取结果
    fitness = get_fitness(animals)
    max_fitness_index = np.argmax(fitness)
    print("max_fitness:", fitness[max_fitness_index])
    x, y = translateDNA(animals)
    x, y = x[max_fitness_index], y[max_fitness_index]
    print("最优的基因型:", animals[max_fitness_index])
    print("x: {} y: {} 函数值: {}".format(x, y, f(x, y)))
    return

def plot_3d(ax):
    X = np.linspace(*X_BOUND, 100)
    Y = np.linspace(*Y_BOUND, 100)
    X,Y = np.meshgrid(X, Y)
    Z = f(X, Y)
    ax.plot_surface(X,Y,Z,rstride=1,cstride=1,cmap=cm.coolwarm)
    ax.set_zlim(-10,10)
    ax.set_xlabel('x')
    ax.set_ylabel('y')
    ax.set_zlabel('z')
    plt.pause(1)
    plt.show()

if __name__ == '__main__':
    # -----------初始化参数-----------------
    DNA_bit = 13  # 一个DNA的二进制位数,(第一维表示符号位)
    Int_bit = 2  # DNA_bit-1(符号位bit)之后整数占的bit位
    DNA_num = 2  # DNA的个数
    animal_num = 200  # 开始种群的数量
    cross_rate = 0.8  # 生殖交叉概率
    variation_rate = 0.005  # 变异的概率
    generator_n = 200  # 种群演变的次数
    X_BOUND = [-3, 3]  # x取值范围
    Y_BOUND = [-3, 3]  # y取值范围

    # 初始化种群,需要判断开始的种群是否符合值域
    animals = np.random.randint(0, 2, size=(animal_num, DNA_bit * DNA_num))

    # ----------------绘图-----------
    fig = plt.figure()
    ax = Axes3D(fig)
    plt.ion()  # 将画图模式改为交互模式,程序遇到plt.show不会暂停,而是继续执行
    plot_3d(ax)

    # 模拟进化选择generator_n轮
    for i in range(generator_n):
        x, y = translateDNA(animals)
        if 'sca' in locals():
            sca.remove()
        sca = ax.scatter(x, y, f(x, y), c='black', marker='.')
        plt.show()
        plt.pause(0.1)

        fitness_score = get_fitness(animals)
        selected_animals = select_animal(animals, fitness_score)
        animals = crossover_and_variation(selected_animals, cross_rate)

        print("第 {} 次迭代".format(i))
        get_result(animals)

    plt.ioff()
    plot_3d(ax)

遗传算法 python_第1张图片

输出所有迭代中最优值代码:

import numpy as np


# ---------------定义目标函数-------------------
def f(x, y):
    return 3 * (1 - x) ** 2 * np.exp(-(x ** 2) - (y + 1) ** 2) - 10 * (x / 5 - x ** 3 - y ** 5) * np.exp(
        -x ** 2 - y ** 2) - 1 / 3 ** np.exp(-(x + 1) ** 2 - y ** 2)


# ---------------DNA解码(计算x,y)-------------
def translate_DNA(animal):  # 解码种群的DNA
    def DNA2t10(DNA):  # 带x, y范围的转换
        # pop: (POP_SIZE, DNA_SIZE) * (DNA_SIZE, 1) --> (POP_SIZE, 1)完成解码
        DNA = np.expand_dims(DNA, 0)
        y = DNA.dot(2 ** np.arange(DNA_bit)[::-1]) / float(2 ** DNA_bit - 1) * (Y_BOUND[1] - Y_BOUND[0]) + Y_BOUND[0]
        return y

    DNA_result = []
    for i in range(0, DNA_bit * DNA_num, DNA_bit):
        DNA = animal[i:i + DNA_bit]
        translated_DNA = DNA2t10(DNA)
        DNA_result.append(translated_DNA)
    return DNA_result


# ------------------计算适应度(计算误差,考虑定义域)------------
def get_fitness(animals):  # 计算种群各个部分的适应度
    fitness_score = np.zeros(len(animals))
    for i in range(len(animals)):
        x, y = translate_DNA(animals[i])
        fitness_score[i] = f(x, y)
    fitness_score = (fitness_score - np.min(fitness_score)) + 1e-5
    return fitness_score


# -------------适者生存(挑选误差较小的答案)---------------
# 根据之前的适应度的结果,误差越小适应度大,可以转换为概率,因此被留下的概率也就越大。
# 轮盘赌法
def select_animal(animals, fitness):  # 按照适应度选择留下的种群
    idx = np.random.choice(np.arange(animal_num), size=animal_num, replace=True, p=(fitness) / (fitness.sum() + 1e-8))
    return animals[idx]


# -----生殖、变异(更改部分二进制位,取反部分二进制位,可能生成误差更小的答案)--------
def variation(children, variation_rate, per_gene_variation=True):  # 模拟编译
    """
    Args:
        children: 交叉后的基因
        variation_rate: 突变概率
        per_gene_variation: 是否逐个基因点突变
    Returns:
    """
    if per_gene_variation:
        gene_size = len(children)
        for i in range(gene_size):
            if np.random.rand() < variation_rate:  # 以MUTATION_RATE的概率进行变异
                children[i] = children[i] ^ 1  # 这一位取反
        return children
    else:
        if np.random.rand() < variation_rate:  # 以MUTATION_RATE的概率进行变异
            mutate_point = np.random.randint(0, DNA_bit * 2)  # 随机产生一个实数,代表要变异基因的位置
            children[mutate_point] = children[mutate_point] ^ 1  # 这一位取反
        return children


def crossover_and_variation(animals, cross_rate, is_randomise=True):  # 模拟生殖过程(包括交配和变异)
    new_animals = []
    for father in animals:
        child = father  # 选择父亲
        if np.random.rand() < cross_rate:  # 产生子代时不是必然发生交叉,而是以一定的概率发生交叉
            mother = animals[np.random.randint(animal_num)]  # 再选择母亲
            if is_randomise:
                cross_points = np.random.randint(low=0, high=2, size=DNA_bit * DNA_num)  # 随机产生交叉的点
                index = np.argwhere(cross_points == 1)  # 找到交叉点
                child[index] = mother[index]  # 交叉互换,模拟生殖
            else:
                cross_points = np.random.randint(low=0, high=DNA_bit * 2)  # 随机产生交叉的点
                child[cross_points:] = mother[cross_points:]  # 孩子得到位于交叉点后的母亲的基因
        variation(child, variation_rate)  # 变异
        new_animals.append(child)
    return np.array(new_animals)


def get_result(animals):  # 获取结果
    fitness = get_fitness(animals)
    max_fitness_index = np.argmax(fitness)
    print("max_fitness:", fitness[max_fitness_index])
    x, y = translate_DNA(animals[max_fitness_index])
    print("最优的基因型:", animals[max_fitness_index])
    print("x: {} y: {} 函数值: {}".format(x, y, f(x, y)))
    return f(x, y), animals[max_fitness_index]

if __name__ == '__main__':
    # -----------初始化参数-----------------
    np.random.seed(0)

    DNA_bit = 13  # 一个DNA的二进制位数,(第一维表示符号位)
    Int_bit = 2  # DNA_bit-1(符号位bit)之后整数占的bit位
    DNA_num = 2  # DNA的个数
    animal_num = 200  # 开始种群的数量
    cross_rate = 0.8  # 生殖交叉概率
    variation_rate = 0.005  # 变异的概率
    generator_n = 50  # 种群演变的次数
    X_BOUND = [-3, 3]  # x取值范围
    Y_BOUND = [-3, 3]  # y取值范围

    best = {}
    index = []

    # 初始化种群,需要判断开始的种群是否符合值域
    animals = np.array([np.random.randint(0, 2, size=(DNA_bit * DNA_num)) for i in range(animal_num)])

    # 模拟进化选择generator_n轮
    for i in range(generator_n):
        fitness_score = get_fitness(animals)
        selected_animals = select_animal(animals, fitness_score)
        animals = crossover_and_variation(selected_animals, cross_rate)

        print("第 {} 次迭代".format(i))
        va,ind = get_result(animals)
        best[i] = ind
        index.append(va)
        inde = np.argmax(np.array(index))
        print("函数最大值:",index[inde], "该值下最优基因:",best[inde])

附录:适应度

假设求函数最大值。在选择过程中需要根据个体适应度确定每个个体被保留下来的概率,而概率不能是负值,所以减去预测中的最小值把适应度值的最小区间提升到从0开始,但是如果适应度为0,其对应的概率也为0,表示该个体不可能在选择中保留下来,这不符合算法思想,遗传算法不绝对否定谁也不绝对肯定谁,所以最后加上了一个很小的正数。代码如下:

def get_fitness(pop): 
	x,y = translateDNA(pop)
	pred = F(x, y)
	return -(pred - np.max(pred)) + 1e-3

对此,最小值适应度函数类似。在求最小值问题上,函数值越小的可能解对应的适应度应该越大,同时适应度也不能为负值,先将适应度减去最大预测值,将适应度可能取值区间压缩为 [ n p . m i n ( p r e d ) − n p . m a x ( p r e d ) , 0 ] [np.min(pred)-np.max(pred), 0] [np.min(pred)−np.max(pred),0],然后添加个负号将适应度变为正数,同理为了不出现0,最后在加上一个很小的正数。代码如下:

def get_fitness(pop): 
	x,y = translateDNA(pop)
	pred = F(x, y)
	return -(pred - np.max(pred)) + 1e-3

交叉和突变:

需要说明的是交叉和变异不是必然发生,而是有一定概率发生。先考虑交叉,最坏情况,交叉产生的子代的DNA都比父代要差(这样算法有可能朝着优化的反方向进行,不收敛),如果交叉是有一定概率不发生,那么就能保证子代有一部分基因和当前这一代基因水平一样;而变异本质上是让算法跳出局部最优解,如果变异时常发生,或发生概率太大,那么算法到了最优解时还会不稳定。交叉概率,范围一般是0.6~1,突变常数(又称为变异概率),通常是0.1或者更小。

2D的交互模式:

import numpy as np
import matplotlib.pyplot as plt

x = np.linspace(0,6,200)
def f(x):
    return np.sin(x)

plt.ion() # 开启交互模式
plt.show()

for i in range(10):
    plt.cla() # 清除axes,即当前 figure 中的活动的axes,但其他axes保持不变。
    index = np.argwhere(np.random.randint(0,2,200)==1)
    y = x[index]

    plt.plot(x, f(x))
    plt.scatter(y,f(y))
    plt.pause(0.1)

plt.ioff() # 关闭交互模式

你可能感兴趣的:(相关代码,python,遗传算法)