- 改进YOLO系列 | YOLOv5/v7 引入 Dynamic Snake Convolution | 动态蛇形卷积
wei子
YOLO目标跟踪人工智能
改进YOLO系列:动态蛇形卷积(DynamicSnakeConvolution,DSC)简介YOLO系列目标检测算法以其速度和精度著称,但对于细长目标例如血管、道路等,其性能仍有提升空间。动态蛇形卷积(DSC)是YOLOv5/v7中引入的一种改进,旨在更好地处理细长目标。DSC原理DSC的核心思想是使用类似蛇形运动的卷积核来提取细长目标的特征。具体来说,DSC卷积核沿着一系列控制点移动,并根据每个
- 动态蛇形卷积(DySnakeConv)在YOLOv8检测头中的应用与优化-分割性能的提升【YOLOv8】
步入烟尘
YOLO动态蛇形卷积DySnakeConv
本专栏专为AI视觉领域的爱好者和从业者打造。涵盖分类、检测、分割、追踪等多项技术,带你从入门到精通!后续更有实战项目,助你轻松应对面试挑战!立即订阅,开启你的YOLOv8之旅!专栏订阅地址:https://blog.csdn.net/mrdeam/category_12804295.html文章目录动态蛇形卷积(DySnakeConv)在YOLOv8检测头中的应用与优化-分割性能的提升【YOLOv
- webpack性能优化策略
雅望天堂i
webpack前端node.js
1.代码分割(CodeSplitting)通过代码分割,可以将代码拆分成多个较小的文件,实现按需加载,减少首屏加载时间。使用SplitChunksPlugin将公共代码提取到单独的chunk中,避免重复打包。config.optimization.splitChunks({chunks:'all',cacheGroups:{//第三方组件libs:{name:'chunk-libs',test:/
- 基于python深度学习遥感影像地物分类与目标识别、分割实践技术应用
xiao5kou4chang6kai4
深度学习遥感勘测python深度学习分类
专题一:深度学习发展与机器学习深度学习的历史发展过程机器学习,深度学习等任务的基本处理流程梯度下降算法讲解不同初始化,学习率对梯度下降算法的实例分析从机器学习到深度学习算法专题二深度卷积网络、卷积神经网络、卷积运算的基本原理池化操作,全连接层,以及分类器的作用BP反向传播算法的理解一个简单CNN模型代码理解特征图,卷积核可视化分析专题三TensorFlow与keras介绍与入门TensorFlow
- 刷题计划day29 动规01背包(一)【01背包】【分割等和子集】【最后一块石头的重量 II】
哈哈哈的懒羊羊
算法java数据结构leetcode动态规划背包问题蓝桥杯
⚡刷题计划day29动规01背包(一)开始,可以点个免费的赞哦~往期可看专栏,关注不迷路,您的支持是我的最大动力~目录背包问题前言01背包二维数组dp[i][j]关于是否放物品:关于二维dp遍历顺序:一维数组dp(滚动数组)关于一维dp遍历顺序:题目一:416.分割等和子集题目二:1049.最后一块石头的重量II背包问题前言对于面试的话,其实掌握01背包和完全背包,就够用了,最多可以再来一个多重背
- 咱们一起学C++ 第二百三十三篇之C++容器类与模板的探索
一杯年华@编程空间
咱们一起学习C++c++开发语言springbootstruts
咱们一起学C++第二百三十三篇之C++容器类与模板的探索大家好!C++作为一门强大的编程语言,容器类和模板是其中非常重要的特性。今天咱们就一起来深入学习这两个知识点,希望能和大家一起进步,让我们在C++编程的道路上走得更远!一、容器类的重要性与实际应用场景在C++编程中,容器类扮演着至关重要的角色。我们在编写程序时,经常会遇到需要处理大量数据或者管理多个对象的情况。比如开发一个学生信息管理系统,需
- 同步&异步日志系统-设计模式
2401_82609762
设计模式
六大原则单⼀职责原则(SingleResponsibilityPrinciple)类的职责应该单⼀,⼀个⽅法只做⼀件事。职责划分清晰了,每次改动到最⼩单位的⽅法或类。使⽤建议:两个完全不⼀样的功能不应该放⼀个类中,⼀个类中应该是⼀组相关性很⾼的函数、数据的封装⽤例:⽹络聊天:⽹络通信&聊天,应该分割成为⽹络通信类&聊天类开闭原则(OpenClosedPrinciple)对扩展开放,对修改封闭使⽤建
- 跟我一起学Python数据处理(七十四):数据处理工具与网页抓取入门
lilye66
pythonjupyter开发语言爬虫
跟我一起学Python数据处理(七十四):数据处理工具与网页抓取入门大家好!一直以来,我都坚信在学习的道路上,相互交流和共同进步是非常重要的。在Python数据处理这片充满挑战与机遇的领域,我也在持续学习和探索,希望借由这一系列的博客,能和大家一起深入钻研,共同成长。在上一篇博客中,我们学习了Jupyternotebook的相关知识,今天咱们接着来了解Python数据处理中的其他关键内容,包括一些
- 还在为模型权重共享效率发愁?模型权重共享策略优化让效果飙升
盼达思文体科创
经验分享
还在为模型权重共享效率发愁?模型权重共享策略优化让效果飙升引言你是否在进行模型训练时,常常被漫长的训练时间和巨大的计算资源消耗搞得焦头烂额?为什么明明使用了模型权重共享策略,却还是达不到理想的训练效果和效率?今天咱们就来深入剖析模型权重共享策略的优化,让你在模型训练的道路上少走弯路。核心内容问题根源:模型权重共享常见痛点场景化描述:你满心欢喜地使用模型权重共享策略,想着能大大提升训练效率,可实际情
- 图像识别技术与应用第三课
哈哈~156
scikit-learn
一、感知机感知机由美国学者FrankRosenblatt在1957年提出,它根据输入x、权重w和偏差b进行输出,输出结果是二分类(0或1),这和输出实数的回归以及输出概率用于多分类的Softmax不同。像与门、与非门、或门都能通过设定合适的权重和偏差实现。w称为权重:控制输入信号的重要性的参数b称为偏置:偏置是调整神经元被激活的容易程度参数感知机的局限性:感知机的局限性就是只能表示由一条直线分割的
- MONAI 1.4新版本发布,抢先体验MAISI扩散模型以及VISTA交互式分割模型
Tina姐
Monai人工智能
MONAI1.4新版本发布,抢先体验MAISI扩散模型以及VISTA交互式分割模型上周,MONAI发布了备受期待的1.4版本,这是时隔一年的重大更新。新版本带来了一系列令人兴奋的新功能和改进,让我们一起来看看:MAISI:这是一个最先进的3D潜在扩散模型(3DLatentDiffusionModel),专为生成高质量的合成CT图像而设计,无论是否带有解剖标注。MAISI在数据增强和创建逼真的医学成
- TotalSegmentator:一站式医学影像分割工具
柯江同
TotalSegmentator:一站式医学影像分割工具TotalSegmentatorToolforrobustsegmentationof>100importantanatomicalstructuresinCTimages项目地址:https://gitcode.com/gh_mirrors/to/TotalSegmentator项目基础介绍及编程语言TotalSegmentator是一个强
- ️ 总览:TotalSegmentator - 医学影像分割的革新者
金斐茉
️总览:TotalSegmentator-医学影像分割的革新者TotalSegmentatorToolforrobustsegmentationof>100importantanatomicalstructuresinCTimages项目地址:https://gitcode.com/gh_mirrors/to/TotalSegmentator在医学图像处理领域中,精确且高效的自动分割工具对于研究和
- 探索TotalSegmentator:一款强大的全场景图像分割工具
计蕴斯Lowell
探索TotalSegmentator:一款强大的全场景图像分割工具项目地址:https://gitcode.com/gh_mirrors/to/TotalSegmentator项目简介是一个开源的、基于深度学习的全场景图像分割框架。它由开发者Wasserth创建,旨在为医学影像分析、自动驾驶、遥感图像处理等多个领域提供高效且准确的像素级分类能力。该项目的亮点在于其模型的通用性和易用性,能够处理多种
- 如何用matlab进行部分式展开_[转载]用MATLAB进行部分分式展开
麦克羊
为了方便LAPLACE反变换,先对F(s)进行部分分式展开。根据F(s)分为具有不同极点的部分分式展开和具有多重极点的部分分式展开。分别讨论。不同极点的部分分式展开:F(s)=B(s)/A(s)=num/den=(b0*s^n+b1*s^(n-1)+...+bn)/(s^n+a1*s^(n-1)+...an)在matlab行向量中,num和den分别表示传递函数分子和分母的系数num=[b0b1.
- 2.19 图像技术识别与应用
不要不开心了
java-rabbitmqsentinelhttpxnumpydash
本节课介绍了多层感知机(MLP)及其在图像识别技术中的应用。以下是主要内容总结:1.感知机:-由FrankRosenblatt于1957年提出。-输入为x,权重为w,偏置为b,输出为二分类(0或1)。-可用于实现简单逻辑电路(如与门、与非门、或门)。-局限性:只能表示由一条直线分割的空间,无法处理线性不可分问题(如异或门)。2.多层感知机(MLP):-通过引入隐藏层和激活函数来解决感知机的局限性。
- 《第2章 位置与姿态描述》代码
神笔馬良
人工智能
最近在学习《视觉伺服/机器人学、机器视觉与控制》,发现书中的代码运行不通顺,原因可能是matlab升级后,部分函数的参数变化了。所以需要记录错误的代码和正确的代码。第一处:为了使上述推导更形象具体,下面我们将使用MATLAB工具箱展示一些具体数值化的例子。首先用函数se2创建一个齐次变换:错误代码T1=se2(1,2,30*pi/180)报错提示:错误使用matlabshared.spatialm
- leetcode_132. 分割回文串 II
二次元憨批
算法leetcodec++
给定一个字符串s,将s分割成一些子串,使每个子串都是回文串。返回符合要求的最少分割次数。示例:输入:“aab”输出:1解释:进行一次分割就可将s分割成[“aa”,“b”]这样两个回文子串。解析:本题与上一题不同,要求返回最少分割次数。看似更加简单,实则相反。如果用上一题的基础来看,对上一题的结果即所有的分割可能进行统计即可获得最少分割次数。但是毫无疑问的超时了。本题仅要求返回次数,因此不需要进行回
- hive—常用的函数整理
风子~
hivehadoop数据仓库
1、size(split(...))函数用于计算分割后字符串数组的长度1)实例:由客户编号列表计算客户编号个数--数据准备withtmp_test01as(select'tag074445270'tag_id,'202501'busi_mon,'012399931003,012399931000'index_valunionallselect'tag074445271'tag_id,'202501
- 生态碳汇涡度相关监测与通量数据分析
岁月如歌,青春不败
生态遥感数据分析碳汇生态科学涡度通量大涡模拟MATLAB
1、以涡度通量塔的高频观测数据,基于MATLAB:2、涡度通量观测基本概况:观测技术方法、数据获取与预处理等3、涡度通量数据质量控制:通量数据异常值识别与剔除等4、涡度通量数据缺失插补:结合气象数据进行通量数据缺失插补等5、涡度通量数据组分拆分:计算生态系统呼吸和总初级生产力等6、涡度通量数据可视化分析:绘制不同通量组分数据的时间变化等7、涡度通量与气象数据相关性:时间序列相关分析、回归分析等8、
- 机器学习:决策树
小源学AI
人工智能机器学习决策树人工智能
1.初步概念决策树是一种基于分裂特征的机器学习方法,用于分类和回归任务。它通过将数据按特征值进行分割,最终做出预测。与线性模型不同,决策树能够自动识别重要的特征,并根据数据情况生成复杂的决策规则。2.决策树的核心思想决策树的核心思想在于选择一个特征作为分裂条件,将当前的数据划分为两个子节点,并重复这个过程直到达到停止条件。分裂条件的选择通常基于信息增益(香农信息量)或基尼不等式,以确保每次分裂都能
- 机器学习:支持向量机
小源学AI
人工智能支持向量机机器学习算法
基本概念1.什么是支持向量机支持向量机是一种二分类模型,在机器学习、计算机视觉、数据挖掘中广泛应用,主要用于解决数据分类问题,它的目的是寻找一个超平面对样本进行分割,分割的原则是间隔最大化(也就是数据集的边缘点到分界点的距离d最大)最终转化成一个凸二次规划问题来求解。通常的SVM用于二元分类问题,对于多元分类问题可将其分解为多个二元分类问题,在进行分类。2.最优分类边界什么才是最优分类边界?什么条
- EMC Symmetrix V-Max:革命者?集大成者?
weixin_34067980
前端后端运维ViewUI
横向,还是纵向?两个月前,EMC公司存储部门总裁唐纳特利(DavidA.Donatelli)访华的时候,笔者问了这样一个问题:中高端存储市场上,已经出现了以IBMXIV和3PARInServT系列为代表的横向扩展(scaleout)系统,而SymmetrixDMX-4仍属于纵向扩展(scale-up)系统,(不可分割的)单一系统能支持的驱动器数量多达2400个。传说中的DMX-5,还会向这个方向发
- 【多微电网】含多微电网租赁共享储能的配电网博弈优化调度(Matlab代码实现)
科研_研学社
matlab
个人主页欢迎来到本博客❤️❤️博主优势:博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。⛳️座右铭:行百里者,半于九十。本文目录如下:目录1概述2运行结果2.1原文运行结果12.1复现结果图12.2原文结果图22.2复现结果图23文献来源4Matlab代码、数据、文章1概述文献来源:摘要:该文提出多微电网并网系统租赁共享储能组成微电网联盟参与配电网调峰调度的优化调度策略,促进储能高效应用和新能
- 【多微电网】含多微电网租赁共享储能的配电网博弈优化调度(Matlab代码实现)
科研_G.E.M.
matlab
个人主页欢迎来到本博客❤️❤️博主优势:博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。⛳️座右铭:行百里者,半于九十。本文目录如下:目录1概述2运行结果2.1原文运行结果12.1复现结果图12.2原文结果图22.2复现结果图23文献来源4Matlab代码、数据、文章1概述文献来源:摘要:该文提出多微电网并网系统租赁共享储能组成微电网联盟参与配电网调峰调度的优化调度策略,促进储能高效应用和新能
- 基于基于强化学习(Q-Learning)用于底层动态频谱接入(DSA)认知无线电网络的资源分配研究(Matlab代码实现)
长安程序猿
网络matlab开发语言
欢迎来到本博客❤️❤️博主优势:博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。⛳️座右铭:行百里者,半于九十。本文目录如下:目录⛳️赠与读者1概述一、动态频谱接入(DSA)的基本原理与挑战1.DSA的核心机制2.关键挑战二、Q-Learning在DSA资源分配中的应用框架1.算法原理2.典型应用场景三、关键参数与模型设计1.状态空间定义2.动作空间设计3.奖励函数设计四、研究进展与优化方法1.
- MATLAB算法实战应用案例精讲-【目标检测】机器视觉-工业相机(补充篇)
林聪木
数码相机matlab算法
目录知识储备光学系统设计全过程算法原理工业相机基本参数以及选型工业相机基本参数:如何选择合适的工业相机:分辨率分辨率的定义与“检测/测量精度”的区别分辨率与相机的匹配相机关键参数设置工业相机的曝光、曝光时间、快门、增益什么是曝光?什么是快门影响曝光的因素工业相机-坐标系和机械手坐标系的标定工业相机-缺陷检测一、相机的选择(1)工业数字相机的分类:(2)相机的主要参数(3)工业数字摄像机主要接口类型
- 【matlab】大小键盘对应的Kbname
有点傻的小可爱
计算机外设
matlab中可以通过Kbname来识别键盘上的键。在写范式的时候,遇到一个问题,我想用大键盘上排成一行的数字按键评分,比如Kbname('1')表示键盘上的数字1,但是这种写法只能识别小键盘上的数字,无法达到我的目的,网上也没找到相关的资料,于是自己尝试。在尝试的过程中,我注意到大键盘上的数字shift之后是一些标点符号,于是我分别尝试了两种思路:1)Kbname('数字对应的标点符号'),比如
- 成电通信研一,没有实习机会的Java道路是否可行?未来是走Java开发还是嵌入式?
程序员yt
java开发语言
今天给大家分享的是一位粉丝的提问,成电通信研一,没有实习机会的Java道路是否可行?未来是走Java开发还是嵌入式?接下来把粉丝的具体提问和我的回复分享给大家,希望也能给一些类似情况的小伙伴一些启发和帮助。同学提问:你好,我本科杭电,硕士成电,通信工程研一,不知道之后要走java还是嵌入式,嵌入式我把江科大的视频都看完了,也跟着做了实验,不知道后面怎么走。导师应该不放实习,java没实习应该很严重
- 亚远景-ISO/PAS 8800:2024《道路车辆—安全和人工智能》简介
亚远景aspice
汽车人工智能大数据
ISO/PAS8800:2024《道路车辆—安全和人工智能》简介:ISO/PAS8800:2024《道路车辆—安全和人工智能》背景与意义随着汽车智能化发展,自动驾驶和智能座舱等技术快速进步,但人工智能在汽车领域应用面临安全性、数据质量与管理、技术标准规范缺失、公众认知和接受度等挑战。该标准旨在规范汽车领域人工智能技术应用,提高系统安全性、可靠性和兼容性,推动汽车智能化健康发展。ISO/PAS880
- Nginx负载均衡
510888780
nginx应用服务器
Nginx负载均衡一些基础知识:
nginx 的 upstream目前支持 4 种方式的分配
1)、轮询(默认)
每个请求按时间顺序逐一分配到不同的后端服务器,如果后端服务器down掉,能自动剔除。
2)、weight
指定轮询几率,weight和访问比率成正比
- RedHat 6.4 安装 rabbitmq
bylijinnan
erlangrabbitmqredhat
在 linux 下安装软件就是折腾,首先是测试机不能上外网要找运维开通,开通后发现测试机的 yum 不能使用于是又要配置 yum 源,最后安装 rabbitmq 时也尝试了两种方法最后才安装成功
机器版本:
[root@redhat1 rabbitmq]# lsb_release
LSB Version: :base-4.0-amd64:base-4.0-noarch:core
- FilenameUtils工具类
eksliang
FilenameUtilscommon-io
转载请出自出处:http://eksliang.iteye.com/blog/2217081 一、概述
这是一个Java操作文件的常用库,是Apache对java的IO包的封装,这里面有两个非常核心的类FilenameUtils跟FileUtils,其中FilenameUtils是对文件名操作的封装;FileUtils是文件封装,开发中对文件的操作,几乎都可以在这个框架里面找到。 非常的好用。
- xml文件解析SAX
不懂事的小屁孩
xml
xml文件解析:xml文件解析有四种方式,
1.DOM生成和解析XML文档(SAX是基于事件流的解析)
2.SAX生成和解析XML文档(基于XML文档树结构的解析)
3.DOM4J生成和解析XML文档
4.JDOM生成和解析XML
本文章用第一种方法进行解析,使用android常用的DefaultHandler
import org.xml.sax.Attributes;
- 通过定时任务执行mysql的定期删除和新建分区,此处是按日分区
酷的飞上天空
mysql
使用python脚本作为命令脚本,linux的定时任务来每天定时执行
#!/usr/bin/python
# -*- coding: utf8 -*-
import pymysql
import datetime
import calendar
#要分区的表
table_name = 'my_table'
#连接数据库的信息
host,user,passwd,db =
- 如何搭建数据湖架构?听听专家的意见
蓝儿唯美
架构
Edo Interactive在几年前遇到一个大问题:公司使用交易数据来帮助零售商和餐馆进行个性化促销,但其数据仓库没有足够时间去处理所有的信用卡和借记卡交易数据
“我们要花费27小时来处理每日的数据量,”Edo主管基础设施和信息系统的高级副总裁Tim Garnto说道:“所以在2013年,我们放弃了现有的基于PostgreSQL的关系型数据库系统,使用了Hadoop集群作为公司的数
- spring学习——控制反转与依赖注入
a-john
spring
控制反转(Inversion of Control,英文缩写为IoC)是一个重要的面向对象编程的法则来削减计算机程序的耦合问题,也是轻量级的Spring框架的核心。 控制反转一般分为两种类型,依赖注入(Dependency Injection,简称DI)和依赖查找(Dependency Lookup)。依赖注入应用比较广泛。
- 用spool+unixshell生成文本文件的方法
aijuans
xshell
例如我们把scott.dept表生成文本文件的语句写成dept.sql,内容如下:
set pages 50000;
set lines 200;
set trims on;
set heading off;
spool /oracle_backup/log/test/dept.lst;
select deptno||','||dname||','||loc
- 1、基础--名词解析(OOA/OOD/OOP)
asia007
学习基础知识
OOA:Object-Oriented Analysis(面向对象分析方法)
是在一个系统的开发过程中进行了系统业务调查以后,按照面向对象的思想来分析问题。OOA与结构化分析有较大的区别。OOA所强调的是在系统调查资料的基础上,针对OO方法所需要的素材进行的归类分析和整理,而不是对管理业务现状和方法的分析。
OOA(面向对象的分析)模型由5个层次(主题层、对象类层、结构层、属性层和服务层)
- 浅谈java转成json编码格式技术
百合不是茶
json编码java转成json编码
json编码;是一个轻量级的数据存储和传输的语言
在java中需要引入json相关的包,引包方式在工程的lib下就可以了
JSON与JAVA数据的转换(JSON 即 JavaScript Object Natation,它是一种轻量级的数据交换格式,非
常适合于服务器与 JavaScript 之间的数据的交
- web.xml之Spring配置(基于Spring+Struts+Ibatis)
bijian1013
javaweb.xmlSSIspring配置
指定Spring配置文件位置
<context-param>
<param-name>contextConfigLocation</param-name>
<param-value>
/WEB-INF/spring-dao-bean.xml,/WEB-INF/spring-resources.xml,
/WEB-INF/
- Installing SonarQube(Fail to download libraries from server)
sunjing
InstallSonar
1. Download and unzip the SonarQube distribution
2. Starting the Web Server
The default port is "9000" and the context path is "/". These values can be changed in &l
- 【MongoDB学习笔记十一】Mongo副本集基本的增删查
bit1129
mongodb
一、创建复本集
假设mongod,mongo已经配置在系统路径变量上,启动三个命令行窗口,分别执行如下命令:
mongod --port 27017 --dbpath data1 --replSet rs0
mongod --port 27018 --dbpath data2 --replSet rs0
mongod --port 27019 -
- Anychart图表系列二之执行Flash和HTML5渲染
白糖_
Flash
今天介绍Anychart的Flash和HTML5渲染功能
HTML5
Anychart从6.0第一个版本起,已经逐渐开始支持各种图的HTML5渲染效果了,也就是说即使你没有安装Flash插件,只要浏览器支持HTML5,也能看到Anychart的图形(不过这些是需要做一些配置的)。
这里要提醒下大家,Anychart6.0版本对HTML5的支持还不算很成熟,目前还处于
- Laravel版本更新异常4.2.8-> 4.2.9 Declaration of ... CompilerEngine ... should be compa
bozch
laravel
昨天在为了把laravel升级到最新的版本,突然之间就出现了如下错误:
ErrorException thrown with message "Declaration of Illuminate\View\Engines\CompilerEngine::handleViewException() should be compatible with Illuminate\View\Eng
- 编程之美-NIM游戏分析-石头总数为奇数时如何保证先动手者必胜
bylijinnan
编程之美
import java.util.Arrays;
import java.util.Random;
public class Nim {
/**编程之美 NIM游戏分析
问题:
有N块石头和两个玩家A和B,玩家A先将石头随机分成若干堆,然后按照BABA...的顺序不断轮流取石头,
能将剩下的石头一次取光的玩家获胜,每次取石头时,每个玩家只能从若干堆石头中任选一堆,
- lunce创建索引及简单查询
chengxuyuancsdn
查询创建索引lunce
import java.io.File;
import java.io.IOException;
import org.apache.lucene.analysis.Analyzer;
import org.apache.lucene.analysis.standard.StandardAnalyzer;
import org.apache.lucene.document.Docume
- [IT与投资]坚持独立自主的研究核心技术
comsci
it
和别人合作开发某项产品....如果互相之间的技术水平不同,那么这种合作很难进行,一般都会成为强者控制弱者的方法和手段.....
所以弱者,在遇到技术难题的时候,最好不要一开始就去寻求强者的帮助,因为在我们这颗星球上,生物都有一种控制其
- flashback transaction闪回事务查询
daizj
oraclesql闪回事务
闪回事务查询有别于闪回查询的特点有以下3个:
(1)其正常工作不但需要利用撤销数据,还需要事先启用最小补充日志。
(2)返回的结果不是以前的“旧”数据,而是能够将当前数据修改为以前的样子的撤销SQL(Undo SQL)语句。
(3)集中地在名为flashback_transaction_query表上查询,而不是在各个表上通过“as of”或“vers
- Java I/O之FilenameFilter类列举出指定路径下某个扩展名的文件
游其是你
FilenameFilter
这是一个FilenameFilter类用法的例子,实现的列举出“c:\\folder“路径下所有以“.jpg”扩展名的文件。 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
- C语言学习五函数,函数的前置声明以及如何在软件开发中合理的设计函数来解决实际问题
dcj3sjt126com
c
# include <stdio.h>
int f(void) //括号中的void表示该函数不能接受数据,int表示返回的类型为int类型
{
return 10; //向主调函数返回10
}
void g(void) //函数名前面的void表示该函数没有返回值
{
//return 10; //error 与第8行行首的void相矛盾
}
in
- 今天在测试环境使用yum安装,遇到一个问题: Error: Cannot retrieve metalink for repository: epel. Pl
dcj3sjt126com
centos
今天在测试环境使用yum安装,遇到一个问题:
Error: Cannot retrieve metalink for repository: epel. Please verify its path and try again
处理很简单,修改文件“/etc/yum.repos.d/epel.repo”, 将baseurl的注释取消, mirrorlist注释掉。即可。
&n
- 单例模式
shuizhaosi888
单例模式
单例模式 懒汉式
public class RunMain {
/**
* 私有构造
*/
private RunMain() {
}
/**
* 内部类,用于占位,只有
*/
private static class SingletonRunMain {
priv
- Spring Security(09)——Filter
234390216
Spring Security
Filter
目录
1.1 Filter顺序
1.2 添加Filter到FilterChain
1.3 DelegatingFilterProxy
1.4 FilterChainProxy
1.5
- 公司项目NODEJS实践0.1
逐行分析JS源代码
mongodbnginxubuntunodejs
一、前言
前端如何独立用nodeJs实现一个简单的注册、登录功能,是不是只用nodejs+sql就可以了?其实是可以实现,但离实际应用还有距离,那要怎么做才是实际可用的。
网上有很多nod
- java.lang.Math
liuhaibo_ljf
javaMathlang
System.out.println(Math.PI);
System.out.println(Math.abs(1.2));
System.out.println(Math.abs(1.2));
System.out.println(Math.abs(1));
System.out.println(Math.abs(111111111));
System.out.println(Mat
- linux下时间同步
nonobaba
ntp
今天在linux下做hbase集群的时候,发现hmaster启动成功了,但是用hbase命令进入shell的时候报了一个错误 PleaseHoldException: Master is initializing,查看了日志,大致意思是说master和slave时间不同步,没办法,只好找一种手动同步一下,后来发现一共部署了10来台机器,手动同步偏差又比较大,所以还是从网上找现成的解决方
- ZooKeeper3.4.6的集群部署
roadrunners
zookeeper集群部署
ZooKeeper是Apache的一个开源项目,在分布式服务中应用比较广泛。它主要用来解决分布式应用中经常遇到的一些数据管理问题,如:统一命名服务、状态同步、集群管理、配置文件管理、同步锁、队列等。这里主要讲集群中ZooKeeper的部署。
1、准备工作
我们准备3台机器做ZooKeeper集群,分别在3台机器上创建ZooKeeper需要的目录。
数据存储目录
- Java高效读取大文件
tomcat_oracle
java
读取文件行的标准方式是在内存中读取,Guava 和Apache Commons IO都提供了如下所示快速读取文件行的方法: Files.readLines(new File(path), Charsets.UTF_8); FileUtils.readLines(new File(path)); 这种方法带来的问题是文件的所有行都被存放在内存中,当文件足够大时很快就会导致
- 微信支付api返回的xml转换为Map的方法
xu3508620
xmlmap微信api
举例如下:
<xml>
<return_code><![CDATA[SUCCESS]]></return_code>
<return_msg><![CDATA[OK]]></return_msg>
<appid><