一起学习用Verilog在FPGA上实现CNN----(二)卷积层设计

1 打开Vivado工程

Vivado工程文件如图:

一起学习用Verilog在FPGA上实现CNN----(二)卷积层设计_第1张图片

打开Vivado软件,打开工程,如图:

一起学习用Verilog在FPGA上实现CNN----(二)卷积层设计_第2张图片

自动升级到当前版本,如图:

一起学习用Verilog在FPGA上实现CNN----(二)卷积层设计_第3张图片

暂时选择现有开发板的型号,如图:

一起学习用Verilog在FPGA上实现CNN----(二)卷积层设计_第4张图片

出现一条警告性信息,暂时先不管,点击OK:

一起学习用Verilog在FPGA上实现CNN----(二)卷积层设计_第5张图片

可以看到完整的工程文件包含如下图:

一起学习用Verilog在FPGA上实现CNN----(二)卷积层设计_第6张图片

2 卷积层设计

自顶而下分析卷积层的设计过程

2.1 Multi Filter Layer

图为该项目的一个卷积层,其中包含了多个卷积核(Filter),模块的输入为图像矩阵和卷积核设置参数,输出为卷积提取的特征矩阵

一起学习用Verilog在FPGA上实现CNN----(二)卷积层设计_第7张图片
图片来自附带的技术文档《Hardware Documentation》

卷积层的原理图如图所示,其中filters的位宽为2400,image的位宽是16384,该层卷积的输出位宽是75264

  • filters位宽计算:卷积核大小为5x5,卷积核个数为6,数据位宽为float16(16bits),所以5x5x6x16=2400
  • image位宽计算:手写数字图像大小为32x32,数据位宽为float16,所以32x32x16=16384
  • outputConv位宽计算:28x28x6x16=75264,式中28x28表示卷积层输出特征矩阵的长和宽,6表示卷积核的数量,数据位宽是float16
  • 补充卷积输出特征尺寸计算:m=[(n-k+2xp)/s]+1,n表示输入图像或特征矩阵的尺寸,k表示卷积核的尺寸,s表示卷积核滑动的步长(stride),p表示填充(padding)。例如,图像大小为32x32,卷积核大小为5x5,步长为1,m=[(32-5+2x0)/1]+1=28

一起学习用Verilog在FPGA上实现CNN----(二)卷积层设计_第8张图片

2.2 Single Filter Layer

单个卷积核层的设计如图,输入为图像矩阵image和单个卷积核filter,输出卷积核处理的特征矩阵

一起学习用Verilog在FPGA上实现CNN----(二)卷积层设计_第9张图片
图片来自附带的技术文档《Hardware Documentation》

原理图如图所示,filter的位宽为400,image的位宽是16384,输出位宽是12544

  • filters位宽计算:卷积核大小为5x5,卷积核个数为1,数据位宽为float16,所以5x5x1x16=400
  • image位宽计算:手写数字图像大小为32x32,数据位宽为float16,所以32x32x16=16384
  • outputConv位宽计算:28x28x1x16=12544,式中28x28表示卷积层输出特征矩阵的长和宽,1表示卷积核的数量,数据位宽是float16

一起学习用Verilog在FPGA上实现CNN----(二)卷积层设计_第10张图片

2.3 Convolution Unit

卷积单元如图所示,输入为卷积核filter和卷积核窗口覆盖的图像image,计算输出该窗口提取的特征

一起学习用Verilog在FPGA上实现CNN----(二)卷积层设计_第11张图片
图片来自附带的技术文档《Hardware Documentation》

原理图如图所示,filter的位宽为400,卷积核窗口覆盖的图像image的位宽是400,输出位宽是16

  • filters位宽计算:卷积核大小为5x5,卷积核个数为1,数据位宽为float16,所以5x5x1x16=400
  • image位宽计算:手写数字图像大小为32x32,卷积核窗口覆盖的图像大小为5x5,数据位宽为float16,所,5x5x16=400
  • result位宽计算:输出结果为float16数据类型的数,具体计算见 2.4 Processing Element 章节

一起学习用Verilog在FPGA上实现CNN----(二)卷积层设计_第12张图片

2.4 Processing Element

卷积单元具体实现如图所示,即相乘相加操作。卷积计算具体操作就是点乘,本质就是乘法和加法。图中输入为float16类型数据A和B,输出float16数据类型的结果
在这里插入图片描述
图片来自附带的技术文档《Hardware Documentation》

原理图如图所示,可以看到输入floatA和floatB,以及输出result位宽均为16

一起学习用Verilog在FPGA上实现CNN----(二)卷积层设计_第13张图片

3 模块功能解析

自底向上分析每个模块的功能和具体实现

3.1 Processing Element

如图所示Processing Element由FM(floatMult16),FADD(floatAdd16),result_reg三个单元组成

  • FM(floatMult16)单元是执行两个float16数据的乘法
  • FADD(floatAdd16)单元是执行两个float16数据的加法
  • result_reg寄存器,存放的是新的求和,将电路从组合逻辑转为同步时序电路,保证数据的同步
    一起学习用Verilog在FPGA上实现CNN----(二)卷积层设计_第14张图片

3.2 Convolution Unit

卷积单元完整的顶层原理图如图所示,对一个卷积核和该卷积核覆盖的图像区域(可以称为窗口)进行计算,输出一个计算结果(float16)

在这里插入图片描述

3.3 Single Filter Layer

Single Filter Layer原理图如图所示,由1个RF selector和14个CU组成,该部分是计算一个卷积核与一幅图像的卷积,输出卷积提取的完整图像的特征。

RF selector的作用:将卷积核覆盖的图像区域(可以称为窗口)的数据对应传输给14个CU,输入图像尺寸为32x32x16,卷积核大小为5x5x16,卷积核滑动步长为1,此时一幅完整图像将产生28x28个窗口数据,每个窗口数据为5x5x16。因为14个CU是并行计算的,故RF selector输出位宽为14x5x5x16=5600

为什么选择使用14个CU,作者给出的解释是:LUT的数量在单个或多个卷积核模块中呈指数增长,实验对比后,最终决定使用CU的数量等于输出特征中单行像素数量的一半。例如,输入图像32x32,卷积核5x5,输出特征为28x28,故CU的数量等于28/2=14

一起学习用Verilog在FPGA上实现CNN----(二)卷积层设计_第15张图片

3.4 Multi Filter Layer

Multi Filter Layer原理图如图所示,由2个convLayerSingle组成,即并行度为2。上述内容可知Multi Filter Layer的输入是图像和6个卷积核,因此6个卷积核分为2个一组,循环3次输入到convLayerSingle,即每次执行2个卷积核与图像的卷积

一起学习用Verilog在FPGA上实现CNN----(二)卷积层设计_第16张图片

4 代码实现

4.1 新建工程

新建工程,操作如图所示:

一起学习用Verilog在FPGA上实现CNN----(二)卷积层设计_第17张图片

输入工程名字和工程路径,如图:

一起学习用Verilog在FPGA上实现CNN----(二)卷积层设计_第18张图片

选择创建RTL工程,如图:

一起学习用Verilog在FPGA上实现CNN----(二)卷积层设计_第19张图片

直接点击Next:

一起学习用Verilog在FPGA上实现CNN----(二)卷积层设计_第20张图片

继续点击Next:

一起学习用Verilog在FPGA上实现CNN----(二)卷积层设计_第21张图片

添加芯片型号,操作如图:

一起学习用Verilog在FPGA上实现CNN----(二)卷积层设计_第22张图片

完成创建:

一起学习用Verilog在FPGA上实现CNN----(二)卷积层设计_第23张图片

4.2 floatAdd16

4.2.1 设计输入

创建工程文件,操作如图:

一起学习用Verilog在FPGA上实现CNN----(二)卷积层设计_第24张图片

创建floatAdd16文件:

一起学习用Verilog在FPGA上实现CNN----(二)卷积层设计_第25张图片

创建完成:

一起学习用Verilog在FPGA上实现CNN----(二)卷积层设计_第26张图片

双击打开,输入如下代码:

module floatAdd16 (floatA,floatB,sum);
	
input [15:0] floatA, floatB;  // 输入float16数据A和B
output reg [15:0] sum;   // 输出为float16数据sum

reg sign; // 输出的正负标志位
reg signed [5:0] exponent; //输出数据的指数,有正负故选择有符号数
reg [9:0] mantissa; //输出数据的尾数
reg [4:0] exponentA, exponentB; //输出数据的阶数
reg [10:0] fractionA, fractionB, fraction;	//fraction = {1,mantissa} 暂存位
reg [7:0] shiftAmount;// 移位寄存器,计算加法时配平阶数
reg cout;

always @ (floatA or floatB) begin
	exponentA = floatA[14:10];
	exponentB = floatB[14:10];
	fractionA = {1'b1,floatA[9:0]};
	fractionB = {1'b1,floatB[9:0]}; 
	
	exponent = exponentA;

	if (floatA == 0) begin						//special case (floatA = 0)
		sum = floatB;
	end else if (floatB == 0) begin					//special case (floatB = 0)
		sum = floatA;
	end else if (floatA[14:0] == floatB[14:0] && floatA[15]^floatB[15]==1'b1) begin //A与B互为相反数的情况
		sum=0;
	end else begin
		if (exponentB > exponentA) begin   // 配平阶数,使得A和B在同一阶数
			shiftAmount = exponentB - exponentA;
			fractionA = fractionA >> (shiftAmount);
			exponent = exponentB;
		end else if (exponentA > exponentB) begin 
			shiftAmount = exponentA - exponentB;
			fractionB = fractionB >> (shiftAmount);
			exponent = exponentA;
		end
		if (floatA[15] == floatB[15]) begin			//A与B同符号
			{cout,fraction} = fractionA + fractionB;
			if (cout == 1'b1) begin
				{cout,fraction} = {cout,fraction} >> 1;
				exponent = exponent + 1;
			end
			sign = floatA[15];
		end else begin						//A与B符号不相同
			if (floatA[15] == 1'b1) begin   // A为负数
				{cout,fraction} = fractionB - fractionA;  // B-A 
			end else begin
				{cout,fraction} = fractionA - fractionB;  // A-B
			end
			sign = cout;
			if (cout == 1'b1) begin
				fraction = -fraction;  // 0-负数,求出该数的绝对值
			end else begin
			end
			//对franction进行阶数配平,求出尾数
			if (fraction [10] == 0) begin
				if (fraction[9] == 1'b1) begin
					fraction = fraction << 1;
					exponent = exponent - 1;
				end else if (fraction[8] == 1'b1) begin
					fraction = fraction << 2;
					exponent = exponent - 2;
				end else if (fraction[7] == 1'b1) begin
					fraction = fraction << 3;
					exponent = exponent - 3;
				end else if (fraction[6] == 1'b1) begin
					fraction = fraction << 4;
					exponent = exponent - 4;
				end else if (fraction[5] == 1'b1) begin
					fraction = fraction << 5;
					exponent = exponent - 5;
				end else if (fraction[4] == 1'b1) begin
					fraction = fraction << 6;
					exponent = exponent - 6;
				end else if (fraction[3] == 1'b1) begin
					fraction = fraction << 7;
					exponent = exponent - 7;
				end else if (fraction[2] == 1'b1) begin
					fraction = fraction << 8;
					exponent = exponent - 8;
				end else if (fraction[1] == 1'b1) begin
					fraction = fraction << 9;
					exponent = exponent - 9;
				end else if (fraction[0] == 1'b1) begin
					fraction = fraction << 10;
					exponent = exponent - 10;
				end 
			end
		end
		mantissa = fraction[9:0];
		if(exponent[5]==1'b1) begin //exponent is negative
			sum = 16'b0000000000000000;
		end
		else begin
			sum = {sign,exponent[4:0],mantissa};//组合数据
		end		
	end		
end

endmodule

如图所示:

一起学习用Verilog在FPGA上实现CNN----(二)卷积层设计_第27张图片

4.2.2 分析与综合

对设计进行分析,操作如图:

一起学习用Verilog在FPGA上实现CNN----(二)卷积层设计_第28张图片

分析后的设计,Vivado自动生成原理图,如图:

一起学习用Verilog在FPGA上实现CNN----(二)卷积层设计_第29张图片

对设计进行综合,操作如图:

一起学习用Verilog在FPGA上实现CNN----(二)卷积层设计_第30张图片

综合完成后,弹出窗口如下,直接关闭:

一起学习用Verilog在FPGA上实现CNN----(二)卷积层设计_第31张图片

4.2.3 功能仿真

创建TestBench,操作如图所示:

一起学习用Verilog在FPGA上实现CNN----(二)卷积层设计_第32张图片

创建激励文件,输入文件名:

一起学习用Verilog在FPGA上实现CNN----(二)卷积层设计_第33张图片

创建完成:

一起学习用Verilog在FPGA上实现CNN----(二)卷积层设计_第34张图片

双击打开,输入激励代码:

`timescale 100 ns / 10 ps

module tb_floatAdd16();
reg [15:0] floatA;
reg [15:0] floatB;
wire [15:0] sum;

initial begin
	
	// A + B = 16'h3800 = 0.5
	#0
	floatA = 16'h34CD; // 0.3
	floatB = 16'h3266; // 0.2

	// A + B = 34CD
	#10
	floatA = 16'h34CD;
	floatB = 16'h0000; // 0
	#10
	$stop;
end

floatAdd16 FADD
(
	.floatA(floatA),
	.floatB(floatB),
	.sum(sum)
);

endmodule

如图所示:

一起学习用Verilog在FPGA上实现CNN----(二)卷积层设计_第35张图片

开始进行仿真,操作如下:

一起学习用Verilog在FPGA上实现CNN----(二)卷积层设计_第36张图片

仿真操作,如图:

一起学习用Verilog在FPGA上实现CNN----(二)卷积层设计_第37张图片

调整波形,进行观察:

一起学习用Verilog在FPGA上实现CNN----(二)卷积层设计_第38张图片

仿真波形如图:

在这里插入图片描述

关闭仿真:

一起学习用Verilog在FPGA上实现CNN----(二)卷积层设计_第39张图片

点击OK:

一起学习用Verilog在FPGA上实现CNN----(二)卷积层设计_第40张图片

4.3 floatMult16

4.3.1 设计输入

创建floatMult16文件,如图:

一起学习用Verilog在FPGA上实现CNN----(二)卷积层设计_第41张图片

双击打开,输入如下代码:

module floatMult16 (floatA,floatB,product);

input [15:0] floatA, floatB;  // 输入为两个float16数据A和B
output reg [15:0] product;   // 输出为float16数据

reg sign; // 输出的正负标志位
reg signed [5:0] exponent; // 输出数据的指数,有正负故选择有符号数
reg [9:0] mantissa; // 输出数据的小数
reg [10:0] fractionA, fractionB;	//fraction = {1,mantissa} 计算二进制数据最高位 补1
reg [21:0] fraction; // 相乘结果参数


always @ (floatA or floatB) begin
	if (floatA == 0 || floatB == 0) begin  // A或者B为0的情况
		product = 0;
	end else begin
		sign = floatA[15] ^ floatB[15];  // 异或门判断输出的正负
		exponent = floatA[14:10] + floatB[14:10] - 5'd15 + 5'd2; // 由于借位给fractionA和fractionB,需要先补齐两位指数
	
		fractionA = {1'b1,floatA[9:0]}; // 借位给fractionA
		fractionB = {1'b1,floatB[9:0]}; // 借位给fractionB
		fraction = fractionA * fractionB; // 计算二进制乘法
		//  找到第一个不为0的数字并对指数进行匹配处理
		if (fraction[21] == 1'b1) begin
			fraction = fraction << 1;
			exponent = exponent - 1; 
		end else if (fraction[20] == 1'b1) begin
			fraction = fraction << 2;
			exponent = exponent - 2;
		end else if (fraction[19] == 1'b1) begin
			fraction = fraction << 3;
			exponent = exponent - 3;
		end else if (fraction[18] == 1'b1) begin
			fraction = fraction << 4;
			exponent = exponent - 4;
		end else if (fraction[17] == 1'b1) begin
			fraction = fraction << 5;
			exponent = exponent - 5;
		end else if (fraction[16] == 1'b1) begin
			fraction = fraction << 6;
			exponent = exponent - 6;
		end else if (fraction[15] == 1'b1) begin
			fraction = fraction << 7;
			exponent = exponent - 7;
		end else if (fraction[14] == 1'b1) begin
			fraction = fraction << 8;
			exponent = exponent - 8;
		end else if (fraction[13] == 1'b1) begin
			fraction = fraction << 9;
			exponent = exponent - 9;
		end else if (fraction[12] == 1'b0) begin
			fraction = fraction << 10;
			exponent = exponent - 10;
		end 
	
		mantissa = fraction[21:12];
		if(exponent[5]==1'b1) begin //exponent is negative
			product=16'b0000000000000000;
		end
		else begin
			product = {sign,exponent[4:0],mantissa};// 拼接输出数据
		end
	end
end

endmodule

如图所示:

一起学习用Verilog在FPGA上实现CNN----(二)卷积层设计_第42张图片

4.3.2 分析与综合

将floatMult16设置为顶层:

一起学习用Verilog在FPGA上实现CNN----(二)卷积层设计_第43张图片

关闭上次的分析文件:

一起学习用Verilog在FPGA上实现CNN----(二)卷积层设计_第44张图片

对设计进行分析,操作如图:

一起学习用Verilog在FPGA上实现CNN----(二)卷积层设计_第45张图片

分析后的设计,Vivado自动生成原理图,如图:

一起学习用Verilog在FPGA上实现CNN----(二)卷积层设计_第46张图片

对设计进行综合,操作如图:

一起学习用Verilog在FPGA上实现CNN----(二)卷积层设计_第47张图片

4.3.3 功能仿真

创建TestBench,操作如图所示:

一起学习用Verilog在FPGA上实现CNN----(二)卷积层设计_第48张图片

双击打开,输入激励代码:

`timescale 100 ns / 10 ps

module tb_floatMult16();
reg [15:0] floatA;
reg [15:0] floatB;
wire [15:0] product;

initial begin
	
	// 4 * 5
	#0
	floatA = 16'b0100010000000000;
	floatB = 16'b0100010100000000;

	// 0.0004125 * 0
	#10
	floatA = 16'b0000111011000010;
	floatB = 16'b0000000000000000;

	#10
	$stop;
end

floatMult16 FM
(
	.floatA(floatA),
	.floatB(floatB),
	.product(product)
);

endmodule

如图所示:

一起学习用Verilog在FPGA上实现CNN----(二)卷积层设计_第49张图片

将tb_floatMult16设置为顶层:

一起学习用Verilog在FPGA上实现CNN----(二)卷积层设计_第50张图片

开始进行仿真,操作如下:

一起学习用Verilog在FPGA上实现CNN----(二)卷积层设计_第51张图片

添加仿真对象,操作如图:

一起学习用Verilog在FPGA上实现CNN----(二)卷积层设计_第52张图片

开始仿真,如图:

一起学习用Verilog在FPGA上实现CNN----(二)卷积层设计_第53张图片

仿真波形,如图:

一起学习用Verilog在FPGA上实现CNN----(二)卷积层设计_第54张图片

4.4 Processing Element

4.4.1 设计输入

创建processingElement16文件,如图:

一起学习用Verilog在FPGA上实现CNN----(二)卷积层设计_第55张图片

双击打开,输入如下代码:

module processingElement16(clk,reset,floatA,floatB,result);

parameter DATA_WIDTH = 16;  // 数据类型float16

input clk, reset;
input [DATA_WIDTH-1:0] floatA, floatB; // 输入float16数据A和B
output reg [DATA_WIDTH-1:0] result;  // 输出float16数据

wire [DATA_WIDTH-1:0] multResult;
wire [DATA_WIDTH-1:0] addResult;

floatMult16 FM (floatA,floatB,multResult); // float16乘法运算
floatAdd16 FADD (multResult,result,addResult);// float16加法运算

always @ (posedge clk or posedge reset) begin
	if (reset == 1'b1) begin
		result = 0;    // 开始时,result赋值为0
	end else begin
		result = addResult;  // 求和结果不断更新为result,即为累加操作,result作为最后的输出
	end
end

endmodule

如图所示:

一起学习用Verilog在FPGA上实现CNN----(二)卷积层设计_第56张图片

4.4.2 分析与综合

关闭上次的分析文件:

一起学习用Verilog在FPGA上实现CNN----(二)卷积层设计_第57张图片

将processingElement16设置为顶层:

一起学习用Verilog在FPGA上实现CNN----(二)卷积层设计_第58张图片

对设计进行分析,操作如图:

一起学习用Verilog在FPGA上实现CNN----(二)卷积层设计_第59张图片

分析后的设计,Vivado自动生成原理图,如图:

一起学习用Verilog在FPGA上实现CNN----(二)卷积层设计_第60张图片

对设计进行综合,操作如图:

一起学习用Verilog在FPGA上实现CNN----(二)卷积层设计_第61张图片

4.4.3 功能仿真

创建TestBench,操作如图所示:

一起学习用Verilog在FPGA上实现CNN----(二)卷积层设计_第62张图片

双击打开,输入激励代码:

`timescale 100 ns / 10 ps

module tb_processingElement16();
reg clk,reset;
reg [15:0] floatA, floatB;
wire [15:0] result;

localparam PERIOD = 100;

always
	#(PERIOD/2) clk = ~clk;

initial begin
	#0
	clk = 1'b0;
	reset = 1;
	// A = 2 , B = 3
	floatA = 16'h4000;
	floatB = 16'h4200;

	#PERIOD
	reset = 0;

	#(2*PERIOD)
	$stop;	
end

processingElement16 PE 
(
	.clk(clk),
	.reset(reset),
	.floatA(floatA),
	.floatB(floatB),
	.result(result)
);
endmodule

如图所示:

一起学习用Verilog在FPGA上实现CNN----(二)卷积层设计_第63张图片

将tb_processingElement16设置为顶层:

一起学习用Verilog在FPGA上实现CNN----(二)卷积层设计_第64张图片

开始进行仿真,操作如下:

一起学习用Verilog在FPGA上实现CNN----(二)卷积层设计_第65张图片

开始仿真,如图:

一起学习用Verilog在FPGA上实现CNN----(二)卷积层设计_第66张图片

仿真波形,如图:

一起学习用Verilog在FPGA上实现CNN----(二)卷积层设计_第67张图片

4.5 Convolution Unit

4.5.1 设计输入

创建convUnit文件,如图:

一起学习用Verilog在FPGA上实现CNN----(二)卷积层设计_第68张图片

双击打开,输入如下代码:

module convUnit(clk,reset,image,filter,result);

parameter DATA_WIDTH = 16;  //数据宽度,float16
parameter D = 1; //卷积核深度
parameter F = 5; //卷积核大小

input clk, reset;
input [0:D*F*F*DATA_WIDTH-1] image, filter; //[0:399] image输入
output [0:DATA_WIDTH-1] result;  //[0:15] result输出

reg [DATA_WIDTH-1:0] selectedInput1, selectedInput2;

integer i;


processingElement16 PE
	(
		.clk(clk),
		.reset(reset),
		.floatA(selectedInput1),
		.floatB(selectedInput2),
		.result(result)
	);

// The convolution is calculated in a sequential process to save hardware
// The result of the element wise matrix multiplication is finished after (F*F+2) cycles (2 cycles to reset the processing element and F*F cycles to accumulate the result of the F*F multiplications) 
always @ (posedge clk, posedge reset) begin
	if (reset == 1'b1) begin // reset
		i = 0;
		selectedInput1 = 0;
		selectedInput2 = 0;
	end else if (i > D*F*F-1) begin // if the convolution is finished but we still wait for other blocks to finsih, send zeros to the conv unit (in case of pipelining)
		selectedInput1 = 0;
		selectedInput2 = 0;
	end else begin // send one element of the image part and one element of the filter to be multiplied and accumulated
		selectedInput1 = image[DATA_WIDTH*i+:DATA_WIDTH];
		selectedInput2 = filter[DATA_WIDTH*i+:DATA_WIDTH];
		i = i + 1;
	end
end

endmodule

如图所示:

一起学习用Verilog在FPGA上实现CNN----(二)卷积层设计_第69张图片

4.5.2 分析与综合

将convUnit设置为顶层:

在这里插入图片描述

关闭上次的分析文件:

一起学习用Verilog在FPGA上实现CNN----(二)卷积层设计_第70张图片

对设计进行分析,操作如图:

一起学习用Verilog在FPGA上实现CNN----(二)卷积层设计_第71张图片

分析后的设计,Vivado自动生成原理图,如图:

一起学习用Verilog在FPGA上实现CNN----(二)卷积层设计_第72张图片

对设计进行综合,操作如图:

一起学习用Verilog在FPGA上实现CNN----(二)卷积层设计_第73张图片

4.5.3 功能仿真

创建TestBench,操作如图所示:

一起学习用Verilog在FPGA上实现CNN----(二)卷积层设计_第74张图片

双击打开,输入激励代码:

`timescale 100 ns / 10 ps

module tb_convUnit();
reg clk, reset;
reg [1*5*5*16-1:0] image, filter; // we test with a filter whose size is 2*3*3 
wire [15:0] result;

localparam PERIOD = 100;

always
	#(PERIOD/2) clk = ~clk;

initial begin
	#0
	clk = 1'b0;
	reset = 1;
	// We test with an image part and a filter whose values are all 4 
	// The expected result is 400 generated after 25 clock cycles
	image =  400'h4400440044004400440044004400440044004400440044004400440044004400440044004400440044004400440044004400;
	filter = 400'h4400440044004400440044004400440044004400440044004400440044004400440044004400440044004400440044004400;
	
	#PERIOD
	reset = 0;
	
	#(27*PERIOD)
	$displayh(result);
	$stop;
end

convUnit 
#(
	.DATA_WIDTH(16),
	.D(1),
	.F(5)
)
UUT
(
	.clk(clk),
	.reset(reset),
	.image(image),
	.filter(filter),
	.result(result)
);
endmodule

如图所示:

一起学习用Verilog在FPGA上实现CNN----(二)卷积层设计_第75张图片

将tb_convUnit设置为顶层:

一起学习用Verilog在FPGA上实现CNN----(二)卷积层设计_第76张图片

开始进行仿真,操作如下:

一起学习用Verilog在FPGA上实现CNN----(二)卷积层设计_第77张图片

开始仿真,如图:

一起学习用Verilog在FPGA上实现CNN----(二)卷积层设计_第78张图片

仿真波形,如图:

一起学习用Verilog在FPGA上实现CNN----(二)卷积层设计_第79张图片

4.6 Single Filter Layer

4.6.1 设计输入

创建convLayerSingle工程文件,如图:

一起学习用Verilog在FPGA上实现CNN----(二)卷积层设计_第80张图片

双击打开,输入如下代码:

module convLayerSingle(clk,reset,image,filter,outputConv);

parameter DATA_WIDTH = 16;
parameter D = 1; //卷积核的深度
parameter H = 32; //输入图像的高度
parameter W = 32; //输入图像的宽度
parameter F = 5; //卷积核的大小

input clk, reset;
input [0:D*H*W*DATA_WIDTH-1] image;
input [0:D*F*F*DATA_WIDTH-1] filter;
output reg [0:(H-F+1)*(W-F+1)*DATA_WIDTH-1] outputConv; // output of the module

wire [0:((W-F+1)/2)*DATA_WIDTH-1] outputConvUnits; // output of the conv units and input to the row selector

reg internalReset;
wire [0:(((W-F+1)/2)*D*F*F*DATA_WIDTH)-1] receptiveField; // array of the matrices to be sent to conv units


integer counter, outputCounter;
//counter: number of clock cycles need for the conv unit to finsish
//outputCounter: index to map the output of the conv units to the output of the module

reg [5:0] rowNumber, column; 
//rowNumber: determines the row that is calculated by the conv units
//column: determines if we are calculating the first or the second 14 pixels of the output row

RFselector
#(
	.DATA_WIDTH(DATA_WIDTH),
	.D(D),
	.H(H),
	.W(W),
	.F(F)
) RF
(
	.image(image),
	.rowNumber(rowNumber),
	.column(column),
	.receptiveField(receptiveField)
);

genvar n;

generate //generating n convolution units where n is half the number of pixels in one row of the output image
	for (n = 0; n < (H-F+1)/2; n = n + 1) begin 
		convUnit
		#(
			.D(D),
			.F(F)
		) CU
		(
			.clk(clk),
			.reset(internalReset),
			.image(receptiveField[n*D*F*F*DATA_WIDTH+:D*F*F*DATA_WIDTH]),
			.filter(filter),
			.result(outputConvUnits[n*DATA_WIDTH+:DATA_WIDTH])
		);
	end
endgenerate

always @ (posedge clk or posedge reset) begin
	if (reset == 1'b1) begin
		internalReset = 1'b1;
		rowNumber = 0;
		column = 0;
		counter = 0;
		outputCounter = 0;
	end else if (rowNumber < H-F+1) begin
		if (counter == D*F*F+2) begin //The conv unit finishes ater 1*5*5+2 clock cycles
			outputCounter = outputCounter + 1;
			counter = 0;
			internalReset = 1'b1;
			if (column == 0) begin
				column = (H-F+1)/2;
			end else begin
				rowNumber = rowNumber + 1;
				column = 0;
			end
		end else begin
			internalReset = 0;
			counter = counter + 1;
		end
	end
end

always @ (*) begin
	outputConv[outputCounter*((W-F+1)/2)*DATA_WIDTH+:((W-F+1)/2)*DATA_WIDTH] = outputConvUnits;
end

endmodule

如图所示:

一起学习用Verilog在FPGA上实现CNN----(二)卷积层设计_第81张图片

继续创建RFselector文件:

一起学习用Verilog在FPGA上实现CNN----(二)卷积层设计_第82张图片

双击打开,输入如下代码:

module RFselector(image,rowNumber, column,receptiveField);

parameter DATA_WIDTH = 16;
parameter D = 1; //卷积核深度
parameter H = 32; //图像高度
parameter W = 32; //图像宽度
parameter F = 5; //卷积核尺寸

input [0:D*H*W*DATA_WIDTH-1] image;
input [5:0] rowNumber, column;
output reg [0:(((W-F+1)/2)*D*F*F*DATA_WIDTH)-1] receptiveField;

integer address, c, k, i;

always @ (image or rowNumber or column) begin
	address = 0;
	if (column == 0) begin
		for (c = 0; c < (W-F+1)/2; c = c + 1) begin
			for (k = 0; k < D; k = k + 1) begin
				for (i = 0; i < F; i = i + 1) begin
					receptiveField[address*F*DATA_WIDTH+:F*DATA_WIDTH] = image[rowNumber*W*DATA_WIDTH+c*DATA_WIDTH+k*H*W*DATA_WIDTH+i*W*DATA_WIDTH+:F*DATA_WIDTH];
					address = address + 1;
				end
			end
		end
	end else begin
		for (c = (W-F+1)/2; c < (W-F+1); c = c + 1) begin
			for (k = 0; k < D; k = k + 1) begin
				for (i = 0; i < F; i = i + 1) begin
					receptiveField[address*F*DATA_WIDTH+:F*DATA_WIDTH] = image[rowNumber*W*DATA_WIDTH+c*DATA_WIDTH+k*H*W*DATA_WIDTH+i*W*DATA_WIDTH+:F*DATA_WIDTH];
					address = address + 1;
				end
			end
		end
	end
	
end

endmodule

如图所示:

一起学习用Verilog在FPGA上实现CNN----(二)卷积层设计_第83张图片

4.6.2 分析与综合

将convLayerSingle设置为顶层:

一起学习用Verilog在FPGA上实现CNN----(二)卷积层设计_第84张图片

关闭上次的分析文件:

一起学习用Verilog在FPGA上实现CNN----(二)卷积层设计_第85张图片

对设计进行分析,操作如图:

一起学习用Verilog在FPGA上实现CNN----(二)卷积层设计_第86张图片

分析后的设计,Vivado自动生成原理图,如图:

一起学习用Verilog在FPGA上实现CNN----(二)卷积层设计_第87张图片

对设计进行综合,操作如图:

一起学习用Verilog在FPGA上实现CNN----(二)卷积层设计_第88张图片

4.6.3 功能仿真

创建TestBench,文件名为操作tb_convLayerSingle,如图所示:

一起学习用Verilog在FPGA上实现CNN----(二)卷积层设计_第89张图片

双击打开,输入激励代码:

`timescale 1ns / 1ps
module tb_convLayerSingle();
reg clk, reset;
reg [1*32*32*16-1:0] image; //We test with a 1*32*32 image
reg [1*5*5*16-1:0] filter; //We test with a 1*5*5 filter
wire [1*28*28*16-1:0] outputConv;

localparam PERIOD = 100;

integer i, clkCounter;

always
	#(PERIOD/2) clk = ~clk;

always @ (posedge clk) begin
	clkCounter = clkCounter + 1;
end

initial begin
	#0
	clkCounter = 0;
	clk = 1'b0;
	reset = 1;
	//We test with the first image and the filters of the first layer of LeNet
	image = 16384'h00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000326638fd3bf038fd32460000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000032063b773be83be83be83b6f000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000032c73b1f3bf03be83b7f3b4f3be833272606000000000000000000000000000000000000000000000000000000000000000000000000000000000000290533883b073be83bf03be83a5635453be83bf037a8000000000000000000000000000000000000000000000000000000000000000000000000000000000000391d3be83be83be83bf03be83be8360639ee3bf0393d0000000000000000000000000000000000000000000000000000000000000000000000000000000032663b773bf03bf039f637273bf03b2731e634f53c003945000000000000000000000000000000000000000000000000000000000000000000000000000032063b773be83be8399e2a0634b537982d45000000003bf03ba032460000000000000000000000000000000000000000000000000000000000000000000030c5392d3bf03b4f3a8735450000000000000000000000003bf03be8392d0000000000000000000000000000000000000000000000000000000000000000270739963be83b8834742cc52f070000000000000000000000003bf03be83a1e000000000000000000000000000000000000000000000000000000000000000033273be83be833e80000000000000000000000000000000000003bf03be83a1e00000000000000000000000000000000000000000000000000000000000000003a363bf039f600000000000000000000000000000000000000003c003bf03a2600000000000000000000000000000000000000000000000000000000000034c53bb83be8370700000000000000000000000000000000000000003bf03be838a500000000000000000000000000000000000000000000000000000000000035553be83b372e46000000000000000000000000000000002707383c3bf039d62a0600000000000000000000000000000000000000000000000000000000000035553be83aff000000000000000000000000000000002707381c3be83b0f3474000000000000000000000000000000000000000000000000000000000000000035553be8388d00000000000000000000000000003206392d3be8396d00000000000000000000000000000000000000000000000000000000000000000000000035653bf03b0f00000000000000000000000037273b773bf03915000000000000000000000000000000000000000000000000000000000000000000000000000035553be83bd0389532062f47355539963b0f3bf03aff393d3307000000000000000000000000000000000000000000000000000000000000000000000000000035553be83be83be83b2f3abf3be83be83be83a2638140000000000000000000000000000000000000000000000000000000000000000000000000000000000002f073a3e3be83be83bf03be83be83b4f388d0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000002e4638043be83bf03be8386c30a50000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000;
	filter = 400'h346b33f83146351432de310e2cc624deb409b3a2b61ab4c8b679b63bb455b48d2b45b08b2bdbb4c0b536b4b9b598b810b521;
	#PERIOD
	reset = 0;

	#((56*28+1)*PERIOD)
	for (i = 28*28-1; i >=0; i = i - 1) begin
		$displayh(outputConv[i*16+:16]);
	end 
	$stop;
end

convLayerSingle UUT
(
	.clk(clk),
	.reset(reset),
	.image(image),
	.filter(filter),
	.outputConv(outputConv)
);
endmodule

如图所示:

在这里插入图片描述

将tb_convLayerSingle设置为顶层:

一起学习用Verilog在FPGA上实现CNN----(二)卷积层设计_第90张图片

开始进行仿真,操作如下:

一起学习用Verilog在FPGA上实现CNN----(二)卷积层设计_第91张图片

开始仿真,如图:

一起学习用Verilog在FPGA上实现CNN----(二)卷积层设计_第92张图片

仿真波形如图所示:

一起学习用Verilog在FPGA上实现CNN----(二)卷积层设计_第93张图片

4.7 Multi Filter Layer

4.7.1 设计输入

创建convLayerMulti文件,如图:

一起学习用Verilog在FPGA上实现CNN----(二)卷积层设计_第94张图片

双击打开,输入如下代码:

module convLayerMulti(clk,reset,image,filters,outputConv);

parameter DATA_WIDTH = 16;
parameter D = 1; //输入图像深度
parameter H = 32; //输入图像高度
parameter W = 32; //输入图像宽度
parameter F = 5; //卷积核尺寸
parameter K = 6; //卷积核数量

input clk, reset;
input [0:D*H*W*DATA_WIDTH-1] image;
input [0:K*D*F*F*DATA_WIDTH-1] filters;
output reg [0:K*(H-F+1)*(W-F+1)*DATA_WIDTH-1] outputConv;

reg [0:2*D*F*F*DATA_WIDTH-1] inputFilters;
wire [0:2*(H-F+1)*(W-F+1)*DATA_WIDTH-1] outputSingleLayers;

reg internalReset;

integer filterSet, counter, outputCounter;

genvar i;

generate
	for (i = 0; i < 2; i = i + 1) begin 
		convLayerSingle #(
		  .DATA_WIDTH(DATA_WIDTH),
		  .D(D),
		  .H(H),
		  .W(W),
		  .F(F)
		) UUT 
		(
			.clk(clk),
	     		.reset(internalReset),
	     		.image(image),
	    		.filter(inputFilters[i*D*F*F*DATA_WIDTH+:D*F*F*DATA_WIDTH]),
	     		.outputConv(outputSingleLayers[i*(H-F+1)*(W-F+1)*DATA_WIDTH+:(H-F+1)*(W-F+1)*DATA_WIDTH])
      		);
  	end
endgenerate

always @ (posedge clk or posedge reset) begin
	if (reset == 1'b1) begin
		internalReset = 1'b1;
		filterSet = 0;
		counter = 0;
		outputCounter = 0;		
	end else if (filterSet < K/2) begin
		if (counter == ((((H-F+1)*(W-F+1))/((H-F+1)/2))*(D*F*F+3)+1)) begin
			outputCounter = outputCounter + 1;
			counter = 0;
			internalReset = 1'b1;
			filterSet = filterSet + 1;
		end else begin
			internalReset = 0;
			counter = counter + 1;
		end
	end
end

always @ (*) begin
	inputFilters = filters[filterSet*2*D*F*F*DATA_WIDTH+:2*D*F*F*DATA_WIDTH];
	outputConv[outputCounter*2*(H-F+1)*(W-F+1)*DATA_WIDTH+:2*(H-F+1)*(W-F+1)*DATA_WIDTH] = outputSingleLayers;
end

endmodule

如图所示:

一起学习用Verilog在FPGA上实现CNN----(二)卷积层设计_第95张图片

4.7.2 分析与综合

将convLayerMulti设置为顶层:

一起学习用Verilog在FPGA上实现CNN----(二)卷积层设计_第96张图片

关闭上次的分析文件:

一起学习用Verilog在FPGA上实现CNN----(二)卷积层设计_第97张图片
对设计进行分析,操作如图:

一起学习用Verilog在FPGA上实现CNN----(二)卷积层设计_第98张图片
分析后的设计,Vivado自动生成原理图,如图:

一起学习用Verilog在FPGA上实现CNN----(二)卷积层设计_第99张图片
对设计进行综合,操作如图:

一起学习用Verilog在FPGA上实现CNN----(二)卷积层设计_第100张图片

4.7.3 功能仿真

创建TestBench,操作如图所示:

一起学习用Verilog在FPGA上实现CNN----(二)卷积层设计_第101张图片

双击打开,输入激励代码:

module tb_convLayerMulti();
reg reset, clk;
reg [1*32*32*16-1:0] image;
reg [6*1*5*5*16-1:0] filters;
wire [6*28*28*16-1:0] outputConv;

localparam PERIOD = 100;

integer i;

always
	#(PERIOD/2) clk = ~clk;
	
	
initial begin 
	#0
	clk = 1'b0;
	reset = 1;
	//We test with a 1*32*32 image and 6 5*5 filters, all the values are 4
	//Expected output 4704 (6*28*28) values equal to 400 (16*25)
	 image = 16384'h00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000326638fd3bf038fd32460000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000032063b773be83be83be83b6f000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000032c73b1f3bf03be83b7f3b4f3be833272606000000000000000000000000000000000000000000000000000000000000000000000000000000000000290533883b073be83bf03be83a5635453be83bf037a8000000000000000000000000000000000000000000000000000000000000000000000000000000000000391d3be83be83be83bf03be83be8360639ee3bf0393d0000000000000000000000000000000000000000000000000000000000000000000000000000000032663b773bf03bf039f637273bf03b2731e634f53c003945000000000000000000000000000000000000000000000000000000000000000000000000000032063b773be83be8399e2a0634b537982d45000000003bf03ba032460000000000000000000000000000000000000000000000000000000000000000000030c5392d3bf03b4f3a8735450000000000000000000000003bf03be8392d0000000000000000000000000000000000000000000000000000000000000000270739963be83b8834742cc52f070000000000000000000000003bf03be83a1e000000000000000000000000000000000000000000000000000000000000000033273be83be833e80000000000000000000000000000000000003bf03be83a1e00000000000000000000000000000000000000000000000000000000000000003a363bf039f600000000000000000000000000000000000000003c003bf03a2600000000000000000000000000000000000000000000000000000000000034c53bb83be8370700000000000000000000000000000000000000003bf03be838a500000000000000000000000000000000000000000000000000000000000035553be83b372e46000000000000000000000000000000002707383c3bf039d62a0600000000000000000000000000000000000000000000000000000000000035553be83aff000000000000000000000000000000002707381c3be83b0f3474000000000000000000000000000000000000000000000000000000000000000035553be8388d00000000000000000000000000003206392d3be8396d00000000000000000000000000000000000000000000000000000000000000000000000035653bf03b0f00000000000000000000000037273b773bf03915000000000000000000000000000000000000000000000000000000000000000000000000000035553be83bd0389532062f47355539963b0f3bf03aff393d3307000000000000000000000000000000000000000000000000000000000000000000000000000035553be83be83be83b2f3abf3be83be83be83a2638140000000000000000000000000000000000000000000000000000000000000000000000000000000000002f073a3e3be83be83bf03be83be83b4f388d0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000002e4638043be83bf03be8386c30a50000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000;
	 filters[0*5*5*16+:5*5*16] = 400'h346b33f83146351432de310e2cc624deb409b3a2b61ab4c8b679b63bb455b48d2b45b08b2bdbb4c0b536b4b9b598b810b521;
  	filters[1*5*5*16+:5*5*16] = 400'h2beb2d7b319a3303349830989e6132afa8af343b345632da34043406345c30ebac9dacf7b0ec2464b26d2e3bb2c4b33cb203;
	 filters[2*5*5*16+:5*5*16] = 400'ha610312fad4522feac2330d832a4319ba5ecaac229349a10afb12f4aaeb8aadb2f99b26021bdac24a968aef7321c29c82d35;
	 filters[3*5*5*16+:5*5*16] = 400'h240634542fc9375033bf3851365635c4a3bd2b162aac2a602c7e31812d6a35d03782310c37c130e932e22624a6b8ab7da1f3;
	 filters[4*5*5*16+:5*5*16] = 400'ha99baabc2aa33113af6bb1db23c8aa0ab69ab575b6ebb60e16d4b1dfac5a31be2f9c2b2ab298b1b6b2cdae2db5c6b4f0af69;
	 filters[5*5*5*16+:5*5*16] = 400'h37fe37f0380b340434572f01309f31f32e76a6dd2aba9fa734cf303536562c91338e34322f47b1442217a6c2a8eba2a8addc;
	#(PERIOD)

	reset = 0;

	
	#(7*1457*PERIOD)
	for (i = 6*28*28-1; i >=0; i = i - 1) begin
		$displayh(outputConv[i*16+:16]);
	end
	$stop;
end

convLayerMulti UUT 
(
	.clk(clk),
	.reset(reset),
	.image(image),
	.filters(filters),
	.outputConv(outputConv)
);

endmodule

如图所示:

一起学习用Verilog在FPGA上实现CNN----(二)卷积层设计_第102张图片
开始进行仿真,操作如下:

在这里插入图片描述
开始仿真,如图:

一起学习用Verilog在FPGA上实现CNN----(二)卷积层设计_第103张图片

4.8 IntegrationConv

4.8.1 设计输入

创建integrationConv文件,如图:

一起学习用Verilog在FPGA上实现CNN----(二)卷积层设计_第104张图片
双击打开,输入如下代码:

module integrationConv (clk,reset,CNNinput,Conv,ConvOutput);

parameter DATA_WIDTH = 16;
parameter ImgInW = 32;
parameter ImgInH = 32;
parameter ConvOut = 28;
parameter Kernel = 5;
parameter DepthC = 6;


input clk, reset;
input [ImgInW*ImgInH*DATA_WIDTH-1:0] CNNinput;
input [Kernel*Kernel*DepthC*DATA_WIDTH-1:0] Conv;
output [ConvOut*ConvOut*DepthC*DATA_WIDTH-1:0] ConvOutput;

convLayerMulti C1
(
	.clk(clk),
	.reset(reset),
	.image(CNNinput),
	.filters(Conv),
	.outputConv(ConvOutput)
);

endmodule

如图所示:

一起学习用Verilog在FPGA上实现CNN----(二)卷积层设计_第105张图片

4.8.2 分析与综合

将integrationConv设置为顶层:

在这里插入图片描述
关闭上次的分析文件:

一起学习用Verilog在FPGA上实现CNN----(二)卷积层设计_第106张图片
对设计进行分析,操作如图:

一起学习用Verilog在FPGA上实现CNN----(二)卷积层设计_第107张图片
分析后的设计,Vivado自动生成原理图,如图:

一起学习用Verilog在FPGA上实现CNN----(二)卷积层设计_第108张图片

对设计进行综合,操作如图:

一起学习用Verilog在FPGA上实现CNN----(二)卷积层设计_第109张图片
纪念一下,“通信行程卡”于2022年12月13日0时,正式下线

一起学习用Verilog在FPGA上实现CNN----(二)卷积层设计_第110张图片

希望本文对大家有帮助,上文若有不妥之处,欢迎指正

分享决定高度,学习拉开差距

你可能感兴趣的:(笔记,一起学ZYNQ,fpga开发,cnn,ZYNQ,神经网络,Vivado)