回归预测 | MATLAB实现WOA-GRU鲸鱼算法优化门控循环单元多输入单输出回归预测

✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。

个人主页:Matlab科研工作室

个人信条:格物致知。

更多Matlab仿真内容点击

智能优化算法  神经网络预测 雷达通信  无线传感器

信号处理 图像处理 路径规划 元胞自动机 无人机  电力系统

⛄ 内容介绍

软测量建模能够有效地解决生产过程中在线分析仪表测量滞后大、价格昂贵、维护保养复杂等问题。目前,神经网络是软测量建模的主要工具之一。而由于一般的循环神经网络在解决软测量问题时存在长范围依赖和梯度消失的问题,故本文采用门限循环单元神经网络(GRU)建立模型,其门限结构更少,训练效率更高。为进一步提高神经网络的预测精度,本文使用鲸鱼优化算法(WOA)来优化GRU的初始参数,并以此建立了WOA-GRU软测量模型。最后,将该方法应用于丙烯精馏塔中塔顶丙烷浓度的预测,实验结果表明,在动态建模方面WOA-GRU具有更高的预测精度。

回归预测 | MATLAB实现WOA-GRU鲸鱼算法优化门控循环单元多输入单输出回归预测_第1张图片

回归预测 | MATLAB实现WOA-GRU鲸鱼算法优化门控循环单元多输入单输出回归预测_第2张图片

回归预测 | MATLAB实现WOA-GRU鲸鱼算法优化门控循环单元多输入单输出回归预测_第3张图片

⛄ 部分代码

%_________________________________________________________________________%

%  Whale Optimization Algorithm (WOA) source codes demo 1.0               %

% The Whale Optimization Algorithm

function [Leader_score,Leader_pos,Convergence_curve]=WOA(SearchAgents_no,Max_iter,lb,ub,dim,fobj)

% initialize position vector and score for the leader

Leader_pos=zeros(1,dim);

Leader_score=inf; %change this to -inf for maximization problems

%Initialize the positions of search agents

% Positions=initialization(SearchAgents_no,dim,ub,lb);

Positions=ceil(rand(SearchAgents_no,dim).*(ub-lb)+lb);

Convergence_curve=zeros(1,Max_iter);

t=0;% Loop counter

% Main loop

while t

    for i=1:size(Positions,1)

        

        % Return back the search agents that go beyond the boundaries of the search space

        Flag4ub=Positions(i,:)>ub;

        Flag4lb=Positions(i,:)

        Positions(i,:)=(Positions(i,:).*(~(Flag4ub+Flag4lb)))+ub.*Flag4ub+lb.*Flag4lb;

        

        % Calculate objective function for each search agent

        fitness=fobj(Positions(i,:));

        

        % Update the leader

        if fitness for maximization problem

            Leader_score=fitness; % Update alpha

            Leader_pos=Positions(i,:);

        end

        

    end

    

    a=2-t*((2)/Max_iter); % a decreases linearly fron 2 to 0 in Eq. (2.3)

    

    % a2 linearly dicreases from -1 to -2 to calculate t in Eq. (3.12)

    a2=-1+t*((-1)/Max_iter);

    

    % Update the Position of search agents 

    for i=1:size(Positions,1)

        r1=rand(); % r1 is a random number in [0,1]

        r2=rand(); % r2 is a random number in [0,1]

        

        A=2*a*r1-a;  % Eq. (2.3) in the paper

        C=2*r2;      % Eq. (2.4) in the paper

        

        

        b=1;               %  parameters in Eq. (2.5)

        l=(a2-1)*rand+1;   %  parameters in Eq. (2.5)

        

        p = rand();        % p in Eq. (2.6)

        

        for j=1:size(Positions,2)

            

            if p<0.5   

                if abs(A)>=1

                    rand_leader_index = floor(SearchAgents_no*rand()+1);

                    X_rand = Positions(rand_leader_index, :);

                    D_X_rand=abs(C*X_rand(j)-Positions(i,j)); % Eq. (2.7)

                    Positions(i,j)=X_rand(j)-A*D_X_rand;      % Eq. (2.8)

                    

                elseif abs(A)<1

                    D_Leader=abs(C*Leader_pos(j)-Positions(i,j)); % Eq. (2.1)

                    Positions(i,j)=Leader_pos(j)-A*D_Leader;      % Eq. (2.2)

                end

                

            elseif p>=0.5

              

                distance2Leader=abs(Leader_pos(j)-Positions(i,j));

                % Eq. (2.5)

                Positions(i,j)=distance2Leader*exp(b.*l).*cos(l.*2*pi)+Leader_pos(j);

                

            end

            

        end

    end

    t=t+1;

    Convergence_curve(t)=Leader_score;

%     [t Leader_score]

end

⛄ 运行结果

回归预测 | MATLAB实现WOA-GRU鲸鱼算法优化门控循环单元多输入单输出回归预测_第4张图片

回归预测 | MATLAB实现WOA-GRU鲸鱼算法优化门控循环单元多输入单输出回归预测_第5张图片

回归预测 | MATLAB实现WOA-GRU鲸鱼算法优化门控循环单元多输入单输出回归预测_第6张图片

回归预测 | MATLAB实现WOA-GRU鲸鱼算法优化门控循环单元多输入单输出回归预测_第7张图片

回归预测 | MATLAB实现WOA-GRU鲸鱼算法优化门控循环单元多输入单输出回归预测_第8张图片

回归预测 | MATLAB实现WOA-GRU鲸鱼算法优化门控循环单元多输入单输出回归预测_第9张图片

回归预测 | MATLAB实现WOA-GRU鲸鱼算法优化门控循环单元多输入单输出回归预测_第10张图片

回归预测 | MATLAB实现WOA-GRU鲸鱼算法优化门控循环单元多输入单输出回归预测_第11张图片

⛄ 参考文献

[1]杨逸俊, 王昕, 王振雷. 基于WOA-GRU的精馏塔丙烷浓度软测量建模[C]// 第30届中国过程控制会议(CPCC 2019). 0.

⛄ Matlab代码关注

❤️部分理论引用网络文献,若有侵权联系博主删除

❤️ 关注我领取海量matlab电子书和数学建模资料

你可能感兴趣的:(神经网络预测,算法,回归,matlab)