mmsegmentaion安装记录

mmsegmentaion安装记录

安装anaconda环境

conda create --name Hopenmmlab python=3.8 -y
conda activate Hopenmmlab

安装GPU torch

pip3 install torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cu116

安装mmcv-full

安装mmcv-full,由系统cuda版本和安装的pytorch版本安装对应版本mmcv[此处的Torch版本应于你当前安装的torch版本一致]

pip install mmcv-full -f https://download.openmmlab.com/mmcv/dist/cu116/torch1.12.1/index.html

使用 MIM/PIP 安装 MMCV

pip install -U openmim
mim install mmcv-full

安装 MMSegmentation(源码下载方式)

git clone https://github.com/open-mmlab/mmsegmentation.git
cd mmsegmentation
pip install -v -e .
# "-v "指详细说明,或更多的输出
# "-e" 表示在可编辑模式下安装项目,因此对代码所做的任何本地修改都会生效,从而无需重新安装。

安装 MMEngine

  • https://mmengine.readthedocs.io/zh_CN/latest/get_started/installation.html[官方教程]

由于pip和min没有安装成功,因此用源码的方式试试

如果克隆代码仓库的速度过慢,可以从 https://gitee.com/open-mmlab/mmengine.git 克隆

git clone https://github.com/open-mmlab/mmengine.git
cd mmengine
pip install -e . -v

测试是否正确安装了 MMEngine

python -c import mmengine;print(mmengine.__version__)

:源码好使,不要开VPN

简单测试一波

第一步: 我们需要下载配置文件和模型权重文件。

mim download mmsegmentation --config pspnet_r50-d8_512x1024_40k_cityscapes --dest .

第二步 验证推理示例

如果您是从源码安装的 MMSegmentation,那么直接运行以下命令进行验证:

python demo/image_demo.py demo/demo.png pspnet_r50-d8_512x1024_40k_cityscapes.py pspnet_r50-d8_512x1024_40k_cityscapes_20200605_003338-2966598c.pth --device cpu --out-file result.jpg

注意:
由于这里是单卡训练,不是多卡。因此需要将type=‘SyncBN’ 修改为 type=‘BN’ 。具体修改这个文件

mmsegmentaion安装记录_第1张图片
修改之后的文件

norm_cfg = dict(type='BN', requires_grad=True)
model = dict(
    type='EncoderDecoder',
    pretrained='open-mmlab://resnet50_v1c',
    backbone=dict(
        type='ResNetV1c',
        depth=50,
        num_stages=4,
        out_indices=(0, 1, 2, 3),
        dilations=(1, 1, 2, 4),
        strides=(1, 2, 1, 1),
        norm_cfg=dict(type='BN', requires_grad=True),
        norm_eval=False,
        style='pytorch',
        contract_dilation=True),
    decode_head=dict(
        type='PSPHead',
        in_channels=2048,
        in_index=3,
        channels=512,
        pool_scales=(1, 2, 3, 6),
        dropout_ratio=0.1,
        num_classes=19,
        norm_cfg=dict(type='BN', requires_grad=True),
        align_corners=False,
        loss_decode=dict(
            type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0)),
    auxiliary_head=dict(
        type='FCNHead',
        in_channels=1024,
        in_index=2,
        channels=256,
        num_convs=1,
        concat_input=False,
        dropout_ratio=0.1,
        num_classes=19,
        norm_cfg=dict(type='BN', requires_grad=True),
        align_corners=False,
        loss_decode=dict(
            type='CrossEntropyLoss', use_sigmoid=False, loss_weight=0.4)),
    train_cfg=dict(),
    test_cfg=dict(mode='whole'))
dataset_type = 'CityscapesDataset'
data_root = 'data/cityscapes/'
img_norm_cfg = dict(
    mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
crop_size = (512, 1024)
train_pipeline = [
    dict(type='LoadImageFromFile'),
    dict(type='LoadAnnotations'),
    dict(type='Resize', img_scale=(2048, 1024), ratio_range=(0.5, 2.0)),
    dict(type='RandomCrop', crop_size=(512, 1024), cat_max_ratio=0.75),
    dict(type='RandomFlip', prob=0.5),
    dict(type='PhotoMetricDistortion'),
    dict(
        type='Normalize',
        mean=[123.675, 116.28, 103.53],
        std=[58.395, 57.12, 57.375],
        to_rgb=True),
    dict(type='Pad', size=(512, 1024), pad_val=0, seg_pad_val=255),
    dict(type='DefaultFormatBundle'),
    dict(type='Collect', keys=['img', 'gt_semantic_seg'])
]
test_pipeline = [
    dict(type='LoadImageFromFile'),
    dict(
        type='MultiScaleFlipAug',
        img_scale=(2048, 1024),
        flip=False,
        transforms=[
            dict(type='Resize', keep_ratio=True),
            dict(type='RandomFlip'),
            dict(
                type='Normalize',
                mean=[123.675, 116.28, 103.53],
                std=[58.395, 57.12, 57.375],
                to_rgb=True),
            dict(type='ImageToTensor', keys=['img']),
            dict(type='Collect', keys=['img'])
        ])
]
data = dict(
    samples_per_gpu=2,
    workers_per_gpu=2,
    train=dict(
        type='CityscapesDataset',
        data_root='data/cityscapes/',
        img_dir='leftImg8bit/train',
        ann_dir='gtFine/train',
        pipeline=[
            dict(type='LoadImageFromFile'),
            dict(type='LoadAnnotations'),
            dict(
                type='Resize', img_scale=(2048, 1024), ratio_range=(0.5, 2.0)),
            dict(type='RandomCrop', crop_size=(512, 1024), cat_max_ratio=0.75),
            dict(type='RandomFlip', prob=0.5),
            dict(type='PhotoMetricDistortion'),
            dict(
                type='Normalize',
                mean=[123.675, 116.28, 103.53],
                std=[58.395, 57.12, 57.375],
                to_rgb=True),
            dict(type='Pad', size=(512, 1024), pad_val=0, seg_pad_val=255),
            dict(type='DefaultFormatBundle'),
            dict(type='Collect', keys=['img', 'gt_semantic_seg'])
        ]),
    val=dict(
        type='CityscapesDataset',
        data_root='data/cityscapes/',
        img_dir='leftImg8bit/val',
        ann_dir='gtFine/val',
        pipeline=[
            dict(type='LoadImageFromFile'),
            dict(
                type='MultiScaleFlipAug',
                img_scale=(2048, 1024),
                flip=False,
                transforms=[
                    dict(type='Resize', keep_ratio=True),
                    dict(type='RandomFlip'),
                    dict(
                        type='Normalize',
                        mean=[123.675, 116.28, 103.53],
                        std=[58.395, 57.12, 57.375],
                        to_rgb=True),
                    dict(type='ImageToTensor', keys=['img']),
                    dict(type='Collect', keys=['img'])
                ])
        ]),
    test=dict(
        type='CityscapesDataset',
        data_root='data/cityscapes/',
        img_dir='leftImg8bit/val',
        ann_dir='gtFine/val',
        pipeline=[
            dict(type='LoadImageFromFile'),
            dict(
                type='MultiScaleFlipAug',
                img_scale=(2048, 1024),
                flip=False,
                transforms=[
                    dict(type='Resize', keep_ratio=True),
                    dict(type='RandomFlip'),
                    dict(
                        type='Normalize',
                        mean=[123.675, 116.28, 103.53],
                        std=[58.395, 57.12, 57.375],
                        to_rgb=True),
                    dict(type='ImageToTensor', keys=['img']),
                    dict(type='Collect', keys=['img'])
                ])
        ]))
log_config = dict(
    interval=50, hooks=[dict(type='TextLoggerHook', by_epoch=False)])
dist_params = dict(backend='nccl')
log_level = 'INFO'
load_from = None
resume_from = None
workflow = [('train', 1)]
cudnn_benchmark = True
optimizer = dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0005)
optimizer_config = dict()
lr_config = dict(policy='poly', power=0.9, min_lr=0.0001, by_epoch=False)
runner = dict(type='IterBasedRunner', max_iters=40000)
checkpoint_config = dict(by_epoch=False, interval=4000)
evaluation = dict(interval=4000, metric='mIoU', pre_eval=True)

运行上述分割代码

mmsegmentaion安装记录_第2张图片

图片存储的路径如下

mmsegmentaion安装记录_第3张图片

参考教程

  • https://mmsegmentation.readthedocs.io/zh_CN/latest/get_started.html#id2
  • https://mmengine.readthedocs.io/zh_CN/latest/get_started/installation.html

你可能感兴趣的:(pytorch,深度学习,python)