捕获摄像头进行直方图均衡化

图像增强

  • 图像增强目的是提高图像在特定应用领域的视觉质量
  • 图象增强包括光滑、锐化、提取边缘、反转、去噪以及各种滤波等等处理。
  • 目的是经过处理后的图像更适合特定的应用(主要是主观的观察分析)
  • 没有通用的理论和方法,主观评价为主

图像增强分为两大类:

  • 空间域图像增强:“空间域”指图像的平面本身。
  • 频率域图像增强:在Fourier变换的基础上处理。

一幅图像被压缩为直方图后,空间信息丢失了

  • 性质1:一个特定的图像有唯一的直方图,但反之不成立。

  • 性质2:在图象中特定对象的直方图是平移不变的。

  • 性质3:在图象中特定对象的直方图是旋转不变的。

  • 性质4: 图像的面积 $ = \displaystyle\int_0^\infty H(D)$

  • 性质5:对离散图像, ∑ D = 0 255 H ( D ) = N L ∗ N S \sum_{D=0}^{255} H(D) = NL * NS D=0255H(D)=NLNS

    其中NL和NS分别为图像的行和列。

  • 性质6:如果一图像由两个不连接的区域组成,则整幅图像的直方图是两个区域的直方图之和。

直方图的用途

  1. 图像的基本处理工具:光照均衡化,特征表达。
  2. 检查图像使用灰度级范围的合理性。【0-255】
  3. 图象二值化边界阈值选择。
    捕获摄像头进行直方图均衡化_第1张图片

数字图像下的直方图均衡化步骤

  1. 概率:

p r ( r k ) n k n , k = 0 , 1 , 2 , . . . . . , L − 1 p_r(r_k)\frac{n_k}{n},k=0,1,2,.....,L-1 pr(rk)nnk,k=0,1,2,.....,L1

  1. 累积分布函数︰

P ( r k ) = ∑ j = 0 k p r ( r j ) = ∑ j = 0 k n k n , k = 0 , 1 , 2 , . . . . . , L − 1 P(r_k) = \sum{_{j=0}^k}p_r(r_j) = \sum{_{j=0}^k} \frac{n_k}{n} ,k=0,1,2,.....,L-1 P(rk)=j=0kpr(rj)=j=0knnk,k=0,1,2,.....,L1

  1. 灰度级映射计数变换函数:

s k = T ( r k ) = ( L − 1 ) ∗ ∑ j = 0 k p r ( r j ) = ∑ j = 0 k n k n , k = 0 , 1 , 2 , . . . . . , L − 1 s_k = T(r_k) = (L-1)*\sum{_{j=0}^k}p_r(r_j) = \sum{_{j=0}^k} \frac{n_k}{n} ,k=0,1,2,.....,L-1 sk=T(rk)=(L1)j=0kpr(rj)=j=0knnk,k=0,1,2,.....,L1

  1. s k s_k sk,四舍五入,如果有相同的 [ s k ] [s_k] [sk],则合并。

捕获摄像头进行直方图均衡化_第2张图片

from os import cpu_count
import cv2 as cv
import numpy as np
import sys
import math as m
sys.path.append('./')
class HistogramEqualization:
    def __init__(self):
        pass
    def rgb2hsi(self, img_src):
        # 对于图像不足3通道的,直接返回原图像
        if len(img_src.shape) < 3:
            return img_src

        img = img_src.astype(np.float32)/255                    # 归一化处理
        img_r = img[:, :, 0]          # 获取红色通道图像
        img_g = img[:, :, 1]          # 获取绿色通道图像
        img_b = img[:, :, 2]          # 获取蓝色通道图像
        
        # 执行转换方程
        sum_rgb = img_r + img_g + img_b      # 求各通道像素值之和
        np.where(sum_rgb > 0, sum_rgb, sys.float_info.min)
        # 计算S分量
        S = 1 - (3 * np.minimum(np.minimum(img_r, img_g), img_b)) / sum_rgb
        # 计算H分量
        den = ((0.5 * (img_r + img_r - img_g - img_b)) / (np.sqrt((img_r - img_g) * (img_r - img_g) + (img_r - img_b) * (img_g - img_b)) + sys.float_info.min))
        # 防止求arccos时参数超出区间[-1, 1]
        den[den > 1] = 1
        den[den < -1] = -1
        H = np.arccos(den)
        index = np.where(img_b > img_g)      # 找出B>G的坐标值
        H[index] = 2 * m.pi - H[index]
        H /= 2 * m.pi
        H[S == 0] = 0
        # 计算I分量
        I = sum_rgb / 3

        # 拼接三个颜色通道并返回
        hsi = np.zeros(img.shape, dtype=np.float32)
        hsi[:, :, 0] = H
        hsi[:, :, 1] = S
        hsi[:, :, 2] = I
        return hsi
    
    # HSI色彩空间转换为RGB色彩空间
    def hsi2rgb(self, hsi):
        # 对于图像不足3通道的,直接返回原图像
        if len(hsi.shape) < 3:
            return hsi

        H = hsi[:, :, 0]                          # 提取H分量
        S = hsi[:, :, 1]                          # 提取S分量
        I = hsi[:, :, 2]                          # 提取I分量
        R = np.zeros(H.shape, dtype=np.float32)   # 创建红色通道
        G = np.zeros(H.shape, dtype=np.float32)   # 创建绿色通道
        B = np.zeros(H.shape, dtype=np.float32)   # 创建蓝色通道

        H *= 2 * m.pi                          # 扩充弧度范围[0, 2*pi]
        
        # 色调[0, 2*pi/3)范围内对应红->绿
        boolh = np.where((H >= 0) & (H < 2 * m.pi / 3))                    # 找出符合条件的二维图像数组下标
        # 计算红色通道
        R[boolh] = I[boolh] * (1 + (S[boolh] * np.cos(H[boolh])) / (np.cos(m.pi / 3 - H[boolh]) + sys.float_info.min))
        # 计算蓝色通道
        B[boolh] = I[boolh] * (1 - S[boolh])
        # 计算绿色通道
        G[boolh] = I[boolh] * 3 - (B[boolh] + R[boolh])

        # 色调[2*pi/3, 4*pi/3)范围内对应绿->蓝
        boolh = np.where((H >= 2 * m.pi / 3) & (H < 4 * m.pi / 3))      # 找出符合条件的二维图像数组下标
        H[boolh] -= 2 * m.pi / 3
        # 计算红色通道
        R[boolh] = I[boolh] * (1 - S[boolh])
        # 计算绿色通道
        G[boolh] = I[boolh] * (1 + (S[boolh] * np.cos(H[boolh])) / (np.cos(m.pi / 3 - H[boolh])))
        # 计算蓝色通道
        B[boolh] = I[boolh] * 3 - (R[boolh] + G[boolh])
        
        # 色调[4*pi/3, 2*pi]范围内对应蓝->红
        boolh = np.where((H >= 4 * m.pi / 3) & (H < 2 * m.pi))          # 找出符合条件的二维图像数组下标
        H[boolh] -= 4 * m.pi / 3
        # 计算绿色通道
        G[boolh] = I[boolh] * (1 - S[boolh])
        # 计算蓝色通道
        B[boolh] = I[boolh] * (1 + (S[boolh] * np.cos(H[boolh])) / (np.cos(m.pi / 3 - H[boolh])))
        # 计算绿色通道
        R[boolh] = I[boolh] * 3 - (B[boolh] + G[boolh])

        # 拼接图像
        rgb = np.zeros(hsi.shape, dtype=np.uint8)
        rgb[:, :, 0] = (R * 255).astype(np.uint8)
        rgb[:, :, 1] = (G * 255).astype(np.uint8)
        rgb[:, :, 2] = (B * 255).astype(np.uint8)

        return rgb
    # 遍历每个像素点,把img里面的像素值转换成initImg的下标索引(0-256),并统计img相同像素点的个数
    def toHisgram(self,img,initImg):
        for i in range(img.shape[0]):
            for j in range(img.shape[1]):
                initImg[img[i,j]] +=1
        return initImg
    
    # 进行直方图均衡化,并返回最终图像
    def toHist(self,img):
        init_img =np.zeros(256,np.int32)
        #直方图统计,获得概率
        # hist = self.toHisgram(img,init_img)
        hist,den= np.histogram(img,256,[0,255])
        hist = hist/np.sum(hist) #统计的像素点(0-256)个数除以总数
        cdf = np.zeros(256, dtype=np.float32)
       #累计分布函数
        np.cumsum(hist[0 : 256], dtype=np.float32, out=cdf[0 : 256]) 
        #变换函数
        t =np.zeros(256,np.uint8)
        t[0 : 256] = 255 * cdf[0 : 256]
        #合并
        dstImg = np.zeros(img.shape, dtype=np.uint8)
        dstImg[:,:] = t[img[:,:]]
        return dstImg
        
    #将RGB转换成HSI色彩空间域,返回HSI图像
    def rgbToHsi(self,img):
        r = img[:,:,0]
        g = img[:,:,1]
        b = img[:,:,2]
        r = r.astype(np.float32)
        g = g.astype(np.float32)
        b = b.astype(np.float32)

        I = (r+g+b)/3
        I = I/255
        img_min = np.min(img,axis=-1)
        S = 1 - (3/(r+g+b)*img_min)
        a = 0.5*((r-g)+(r-b))
        botton = ((r-g)**2+((r-b)*(g-b))+ sys.float_info.min)**0.5
        den =a /botton
        den[den>1]=1
        den[den<-1]=-1
        H = np.arccos(den)
        index = np.where(g=0)&(H<2*m.pi/3))
        R[index] = I[index] * (1+(S[index]*np.cos(H[index]))/(np.cos(m.pi/3-H[index])))
        B[index] = I[index]*(1-S[index])
        G[index] = 3*I[index]-(B[index]+R[index])

        index = np.where((H>=2*m.pi/3)&(H<4*m.pi/3))
        R[index] = I[index]*(1-S[index])
        G[index] = I[index] * (1+(S[index]*np.cos(H[index]-2*m.pi/3))/(np.cos(m.pi-H[index])))
        B[index] = 3*I[index]-(R[index]+G[index])
        
        index = np.where((H>=4*m.pi/3)&(H<2*m.pi))
        B[index] = I[index] * (1+(S[index]*np.cos(H[index]-4*m.pi/3))/(np.cos(5*m.pi/3-H[index])))
        G[index] = I[index]*(1-S[index])
        R[index] = 3*I[index]-(G[index]+B[index])

        rgb[:,:,0] = (255*R).astype(np.uint8)
        rgb[:,:,1] = (255*G).astype(np.uint8)
        rgb[:,:,2] = (255*B).astype(np.uint8)
        return rgb
    # 计算熵,首先统计img像素点的个数,计算每个像素点在img的分布概率,遍历计算p[i]*m.log2(p[i]),乘以-1返回熵
    def solveEntropy(self,img):
        n = img.shape[0] * img.shape[1]

        hist,den= np.histogram(img,256,[0,255])
        p = hist / n
        entropy = 0
        for i in range(0,256):
            if (p[i]==0):
                continue
            entropy += p[i]*m.log2(p[i])
        return -1 * entropy

    #计算图像亮度、对比度、熵值
    def compareResult(self,img,typeName):
        light = np.mean(img)
        contrast = np.std(img)
        entropy = self.solveEntropy(img)
        print(f"{typeName} 亮度为 {np.mean(img)}, 对比度为 {np.std(img)}, 熵为 {self.solveEntropy(img)}\n")
        
    # 主函数 启动摄像头 处理每一帧的图像
    def main(self):
        cap = cv.VideoCapture(0)
        while cap.isOpened():
            ret,frame = cap.read()
            hsi = self.rgb2hsi(frame)
            # 直方图处理HSI亮度I
            I = hsi[:,:,2]
            I *= 255
            self.compareResult(I,"原I")  
            I = I.astype(np.uint8)
            I = self.toHist(I) 
            self.compareResult(I,"直方图均衡化I")  
            hsi[:,:,2] = I/255

            rgb = self.hsiToRgb(hsi)
            
            self.compareResult(frame,"原RGB图")
            self.compareResult(rgb,"I直方图均衡化RGB图")
            cv.imshow("Orgin RGB",frame)
            cv.imshow("ToHist RGB",rgb)
            if cv.waitKey(1)&0xFF == ord('q'):
                break
        cap.release()
    
#执行主函数,实例化HistogramEqualization
if __name__=='__main__':
    HistogramEqualization().main()

    if cv.waitKey(0)&0xFF == 27:
        cv.destroyAllWindows()

你可能感兴趣的:(图像处理,计算机视觉,python,图像处理)