- 遥感之智能优化算法大纲介绍
遥感-GIS
遥感之智能优化算法图像处理arcgis启发式算法
介绍近年来在遥感及人工智能领域研究比较火热的智能优化算法,其中被广泛使用的比如粒子群算法和遗传算法等,在遥感领域,比如高光谱特征选择,机器学习超参数优化等方向有众多的应用,除了提到了两个算法之外,还有众多其他算法,本专栏基于《智能优化算法与涌现计算》及其相关资料,对智能优化算法做些详细的整理和总结,以期给遥感或其他领域提供有价值的参考。书籍大纲为:第一篇仿人智能优化算法描述模拟人脑思维、人体系统、
- 视觉系统对透明胶水的检测都有哪些方案?
csray_aoi
机器视觉检测视觉检测
透明胶水的检测在工业生产中是一个挑战,因为传统的基于RGB相机的视觉系统通常难以检测透明物体。然而,随着技术的发展,现在有多种方法可以有效地检测透明胶水。1.高光谱相机:高光谱相机可以提供不同于传统RGB相机的解决方案。例如,Specim高光谱相机能够覆盖不同波长的光谱,如近红外(NIR)、短波红外(SWIR)和中波红外(MWIR),这些波长的光可以被胶水吸收或反射,从而使得胶水在图像中可见。这种
- MATLAB图像拼接算法及实现
程序员小溪
算法matlab计算机视觉MATLAB人工智能
图像拼接算法及实现(一)论文关键词:图像拼接图像配准图像融合全景图论文摘要:图像拼接(imagemosaic)技术是将一组相互间重叠部分的图像序列进行空间匹配对准,经重采样合成后形成一幅包含各图像序列信息的宽视角场景的、完整的、高清晰的新图像的技术。图像拼接在摄影测量学、计算机视觉、遥感图像处理、医学图像分析、计算机图形学等领域有着广泛的应用价值。一般来说,图像拼接的过程由图像获取,图像配准,图像
- python代码进行图像配准
@爱编程的郭同学
pythonopencv开发语言
这段代码演示了如何使用ORB特征检测器和特征匹配来进行图像配准。图像配准是将两幅图像对齐,使得它们在同一空间中表现出相似的视觉内容。一、效果图展示二、代码importcv2importnumpyasnp#读取两张图像#image1是RGBimage2是高光谱相机拍的伪RGB#iamge1和iamge2尺寸可以是不一样的image1=cv2.imread('datasets/image/ccc.bm
- 高光谱图像降噪方法(2D Wavelet, 3D Wavelet, FORPDN, HyRes等方法)
哥廷根数学学派
信号处理图像处理时频分析matlab算法计算机视觉
近年来,随着遥感应用的不断深入,高光谱图像研究已经成为遥感领域发展最迅速的技术之一。与其他传统成像技术相比,高光谱图像具有更多优势:更丰富的信息量、纳米级的光谱分辨率以及范围更广且连续的光谱。因此,在农业、军事、环境监测和食品工业领域有着广泛的应用。高光谱图像巨大的应用潜力也使得对图像质量的要求日益提高。然而,由于成像系统和环境(传感器敏感度、光子效应、光线条件、校对误差)各种限制因素的影响,成像
- vue3结合openlayers,geoserver实现GIS一张图(WebGIS)
GIS小小白
javascriptvue.js前端arcgispostgresqlweb
一.前言不知不觉一年又要过去了,接触开发也就是这几个月的事情,感觉时间过的真快,今天就是除夕了,祝各位新年快乐呀,话说回来,其实在接触学习WebGIS的过程中还是蛮迷茫的,自己虽然是地信的学生,对于地理方面还有有一些自己的理解,但平时专业课学习的就是arcgis空间分析,遥感图像处理,WebGIS的部分并不是太重视,可能是因为没有那么多时间,毕竟这需要扎实的前端技能,不是一朝一夕就可以说明白的,当
- 遥感影像预处理及影像制图
安然喵
遥感影像在成像过程中受太阳高度角、大气状况、地球曲率、地形起伏、传感器自身的性能等因素影响,存在明显的几何和辐射畸形。在对遥感影像进行信息提取和定量分析之前,需要对其进行预处理,主要包括:几何校正、辐射校正、遥感图像处理和影像制图。经过预处理的影像,需经过图像处理及影像制图,再用于遥感解译。1.1遥感影像几何校正原始遥感影像通常存在严重的几何变形,这种几何变形一般分为系统性和非系统性两大类。系统性
- 2021-11-07
SatVision炼金士
python
缨帽变换(Sentinel-2)文章目录缨帽变换(Sentinel-2)前言缨帽变换关于Sentinel-2的缨帽变换系数1.系数前言缨帽变换(K-T变换),本质上是一种通过矩阵运算实现的图像增强,因其运算的前三个分量分别代表植被的绿度、亮度、湿度,因而在植被检测中得到广泛应用。常用遥感图像处理软件如:ENVI、ARCgisPro等只支持如早期的landsat、IKONOS、QuickBird、W
- Matlab:利用1D-CNN(一维卷积神经网络),分析高光谱曲线数据或时序数据
foddcusL
深度学习试验数据分析matlabcnn算法
1DCNN简介:1D-CNN(一维卷积神经网络)是一种特殊类型的卷积神经网络,设计用于处理一维序列数据。这种网络结构通常由多个卷积层和池化层交替组成,最后使用全连接层将提取的特征映射到输出。以下是1D-CNN的主要组成部分和特点:输入层:接收一维序列数据作为模型的输入。卷积层:使用一系列可训练的卷积核在输入数据上滑动并提取特征。卷积操作能够有效地提取局部信息,从而捕捉输入序列的局部模式。激活函数:
- 【变化检测】变化检测相关数据集+代码+论文合集
zy_destiny
变化检测论文解读深度学习人工智能计算机视觉机器视觉python变化检测
本文包含:光学影像变化检测领域数据集(有label的,无label的)、高光谱影像变化检测领域数据集、3D变化检测领域数据集、传统变化检测算法、深度学习变化检测算法、SAR变化检测算法、高光谱变化检测算法论文及代码等资源。目录WithLabelWithoutLabelHyperspectral3DCodeMultispectralT
- 帕梅拉坚持第八天
是公主啊
两组帕梅拉6min,一个起蹲100个八点起床,然后去自习室学习了一天,晚上六点回家。今天对照了一天的高光谱图,终于整完了。找出1类品种正确率低的问题所在。今天又是期待恋爱但是又混吃等死的一天。以为自己是个王者,没想到还是青铜,不会撩,不会主动,不出去社交,还想恋爱,算了就这样。水到渠成,缘分自回来,I'mfine.
- ASD高光谱数据
ZZ_87c3
ASD数据的转换利用ASD高光谱遥感仪获取的数据为asd格式,需要用专业的软件进行转换(ViewSpecpro)1)导出ASD数据,(根据自己试验所保存的位置进行查看文件名为xx.asd)2)打开ViewSpecPro。具体操作如下:3)数据保存位置:一定要和从asd里面导出来的数据放在同一个文件夹,格式txt,保存。4)直接可粘贴TXT到excel中选中数据
- 高光谱图像加载、归一化和增强(jupyter book)
是lethe先生
jupyteridepython
1.获取高光谱图像:我用的是indian_pines的数据集,感兴趣的兄弟可以自行去官方网下载,gt的那个是它的标签哦,别搞错了。2.图像加载:(1)从本地路径加载importscipy.ioassio#文件路径file_path='你的本地路径'#使用scipy加载.mat文件data=sio.loadmat(file_path)#提取高光谱图像数据spectral_image=data['in
- 无人机应用介绍
qq_35990565
计算机视觉
摘要:随着无人机(UAV)和轻型高光谱成像(HSI)传感器的快速发展,微型无人机载高光谱遥感(HRS)系统得到了发展,并显示出巨大的应用价值和潜力。与星载和机载HSI系统相比,微型无人机载HSI系统的制造和运行成本相对较低,因此成为HRS领域的一个新的研究热点。本文从无人机平台、小型化高光谱传感器、系统集成、数据观测和预处理等方面介绍了无人机载高光谱遥感的最新进展。此外,还介绍了无人机在农业、林业
- 高光谱图像
长安海
高光谱图像高光谱与RDB三通道图像的最大不同是,其具有上百个通道(就是一个三维的数据立方体)高光谱的三维:二维几何空间及一维光谱信息(光谱维度)光谱维度展开不仅可以获得图像上每个点的光谱数据,还可以获得任一个谱段的影像信息
- 高光谱分类论文解读分享之Grid Network: 基于各向异性视角下特征提取的高光谱影像分类
曦曦逆风
高光谱分类分类数据挖掘人工智能高光谱影像cnn
IEEEGRSL2023:GridNetwork:基于各向异性视角下特征提取的高光谱影像分类题目GridNetwork:FeatureExtractioninAnisotropicPerspectiveforHyperspectralImageClassification作者ZhonghaoChen,StudentMember,IEEE,DanfengHong,SeniorMember,IEEE,
- 清晰光谱空间:全自动可调波长系统的高光谱成像优势
友思特 机器视觉与光电
机器视觉波长选择器可调光源
高光谱成像技术高光谱成像技术是一种捕获和分析宽波长信息的技术,能够对材料和特征进行详细的光谱分析和识别。高光谱成像技术的实现通过高光谱相机,其工作原理是使用多个光学传感器或光学滤波器分离不同波长的光,并捕获每个波段的图像,能够在一时间获得目标在不同谱段处的空间图像信息,即空间光谱分布。图1空间光谱分布图和常见获取方式如图1所示,高光谱成像技术通过两种较为常见的方式获取空间内光谱分布信息。第一种是空
- 激光雷达植被叶片入射角效应/地基高光谱激光雷达植被叶片入射角效应
B博士
激光雷达遥感激光雷达入射角效应植被叶片Poullain模型Beckmann定律
文章目录激光雷达入射角效应地基高光谱激光雷达入射角效应激光雷达入射角效应模型简要发展历史(还有其他模型,在此简要列举五种)1.朗伯余弦定律。2.Poullain模型3.KaiTan等多项式模型4.Kaasalainen等提出的改进的与波长相关的Poullain模型5.JieBai等提出入射角效应满足同时与波长和入射角大小相关的改进的Poullain模型,并进一步提出了激光雷达回波强度和反射率的入射
- 激光雷达距离效应/地基高光谱激光雷达距离效应
B博士
激光雷达激光雷达距离效应距离效应函数地基高光谱激光雷达
有关激光雷达植被叶片入射角效应总结,请查看激光雷达植被叶片入射角效应/地基高光谱激光雷达植被叶片入射角效应。激光雷达距离效应:是指激光雷达回波强度随距离逐渐变化的一种现象,是激光雷达扫描几何效应的一种,但不同于入射角效应,距离效应源于激光雷达仪器内部元器件构造本身,与被测目标种类无关。对于地基高光谱激光雷达来说,实验发现,(1)距离效应与被测目标种类无关,是仪器自身内部结构导致的,与波长也无关,所
- 高斯函数半高宽FWHM、拐点差值绝对值一半以及标准差σ的关系
B博士
激光雷达高斯函数半高宽拐点标准差
激光雷达/高光谱激光雷达距离效应半高宽(Full-widthatthehalfofthemaximum,FWHM)是指回波波峰一半所对应的时间全宽,是时间概念,单位一般为ns等。FWHM=22ln2σFWHM=2\sqrt{2ln2}\\sigmaFWHM=22ln2σ计算过程,如下;拐点横坐标差值绝对值一半拐点是指预处理后的波形数据求二阶导后,二阶导为0的点,叫拐点,包括横纵坐标(拐点不同于零点
- 计算机科学与探索 sci,第一篇SCI论文投稿经历(计算机专业)
空桑寂
计算机科学与探索sci
上周获悉投往Thecomputerjournal的SCIE检索论文终于接收,历时半年。人生第一篇SCI,内心极度喜悦,感慨良多。这几年本人一直在小木虫论坛逛,前辈们的投稿经历给本人极大信息和启发,加上计算机学科的SCI论文更难,为答谢小木虫,激励并指引后人继续冲击SCI,我愈发感觉有必要写一篇投稿历程的帖子了。本人来自一个三流大学,是一个“大龄”副教授,虽天资聪颖,但经历坎坷,所以虽已中年,但成果
- 【论文笔记】Effect of Attention Mechanism in Deep Learning-Based Remote Sensing Image Processing:A S...
吃核桃用手夹
注意机制在基于深度学习的遥感图像处理中的作用:系统文献综述综述:概述了已开发的注意力机制以及如何将它们与不同的深度学习神经网络架构集成。此外,它旨在研究注意力机制对基于深度学习的RS图像处理的影响。分析了相应的基于注意力机制的深度学习(At-DL)方法的进展。进行了系统的文献回顾,以确定出版物、出版商、改进的DL方法、使用的数据类型、使用的注意力类型、使用At-DL方法实现的总体准确度的趋势,并提
- 高光谱分类论文解读分享之HybridSN:基于 3-D–2-D CNN 的高光谱分类(经典回顾)
曦曦逆风
分类cnn数据挖掘
IEEEGRSL2019:HybridSN:基于3-D–2-DCNN的高光谱分类题目HybridSN:Exploring3-D–2-DCNNFeatureHierarchyforHyperspectralImageClassification作者SwalpaKumarRoy,StudentMember,IEEE,GopalKrishna,ShivRamDubey,Member,IEEE,andBi
- 高光谱分类论文解读分享之基于形态卷积神经网络的高光谱影像分类
曦曦逆风
分类人工智能python
IEEETGRS2021:基于形态卷积神经网络的高光谱影像分类题目MorphologicalConvolutionalNeuralNetworksforHyperspectralImageClassification作者SwalpaKumarRoy;RanjanMondal;MercedesE.Paoletti;JuanM.Haut;AntonioPlaza关键词Classification,co
- 用于高光谱和多光谱数据融合的耦合非负矩阵分解-解混合
油豆皮
矩阵线性代数python计算机视觉
论文:CoupledNonnegativeMatrixFactorizationUnmixingforHyperspectralandMultispectralDataFusion摘要:本文提出了耦合非负矩阵分解解混合(CNMF),用于低空间分辨率高光谱和高空间分辨率多光谱数据的融合,以产生具有高空间和光谱分辨率的融合数据。CNMF算法将高光谱数据和多光谱数据交替地分解为端元矩阵和丰度矩阵。端元矩
- 全色图像和多光谱卫星影像下载_开始报名啦!2019 年遥感影像大气校正软件ATCOR培训(第13期)...
weixin_39843698
全色图像和多光谱卫星影像下载
尊敬的广大用户:您好!从事遥感工作的您,在工作中对卫星及航空遥感数据的大气校正是否有着很高的要求?面对一大堆需要输入的参数茫然不知从何下手吗?对于CASI/SASI这样的航空高光谱传感器没有对应的传感器模型怎么办?如何对受地形影响的山区进行大气校正呢?影像中有雾霾、薄云在大气校正的同时如何去除呢?您希望通过一个专业而简单的软件完美地实现大气校正吗?如果您有这些问题,ATCOR软件将为您解决。由Re
- 无人机在海洋行业中的应用
成都远石
人工智能
无人机测绘技术是充分利用现有数据和信息资源的有效途径,是实现海洋资源与环境可持续发展的关键技术和重要手段,在资源调查、环境监测与预测中发挥了其他技术不可替代的作用。无人机测绘成果展现主要有DOM、DLG、实景三维等形式。1、无人机海岸带监测利用不同时期的无人机遥感影像,通过无人机遥感图像处理技术和GIS技术的集成应用,结合人机交互目视解译技术,对海岸线和湿地的动态变化进行监测。根据历史数据、区域规
- 无需专线,企业多分支机构、出差人员如何实现办公系统互访?
贝锐
网络
西安某企业致力于光谱成像技术与无人机遥感技术研发、系统集成及创新应用研究推广,高光谱成像技术、红外热成像技术、无人机遥感与近地遥感技术、多光谱荧光与高光谱荧光成像技术、光谱成像创新应用(SpectrAPP)技术方案等领域,随着业务不断发展壮大,目前在全国多地均设有办公室。然而,随着多个分支办公机构的建立,信息系统、办公网络方面的问题也随之而来,如何实现各地办公室及出差人员的协同办公、解决跨地区办公
- 插值、平稳假设、变异函数、基台、块金、克里格…地学计算概念及公式推导
疯狂学习GIS
1引言 最近的几篇博客,分别从多光谱与高光谱遥感的实际应用出发,对影像前期处理与相关算法、反演操作等加以详细介绍。而通过遥感手段获取了丰富的各类地表信息数据后,如何对数据加以良好的数学处理与科学分析,同样是我们需要重视的问题。因此,准备由这一篇博客入手,新建一个专栏,逐篇地对地学计算方面的内容加以初步总结。 那么首先,我们就由地学计算的几个基本概念入手,对相关理论方面的内容加以一定了解。 需
- 高光谱分类论文解读分享之基于多模态融合Transformer的遥感图像分类方法
曦曦逆风
分类人工智能
IEEETGRS2023:基于多模态融合Transformer的遥感图像分类方法题目MultimodalFusionTransformerforRemoteSensingImageClassification作者SwalpaKumarRoy,StudentMember,IEEE,AnkurDeria,DanfengHong,SeniorMember,IEEE,BehnoodRasti,Senior
- 深入浅出Java Annotation(元注解和自定义注解)
Josh_Persistence
Java Annotation元注解自定义注解
一、基本概述
Annontation是Java5开始引入的新特征。中文名称一般叫注解。它提供了一种安全的类似注释的机制,用来将任何的信息或元数据(metadata)与程序元素(类、方法、成员变量等)进行关联。
更通俗的意思是为程序的元素(类、方法、成员变量)加上更直观更明了的说明,这些说明信息是与程序的业务逻辑无关,并且是供指定的工具或
- mysql优化特定类型的查询
annan211
java工作mysql
本节所介绍的查询优化的技巧都是和特定版本相关的,所以对于未来mysql的版本未必适用。
1 优化count查询
对于count这个函数的网上的大部分资料都是错误的或者是理解的都是一知半解的。在做优化之前我们先来看看
真正的count()函数的作用到底是什么。
count()是一个特殊的函数,有两种非常不同的作用,他可以统计某个列值的数量,也可以统计行数。
在统
- MAC下安装多版本JDK和切换几种方式
棋子chessman
jdk
环境:
MAC AIR,OS X 10.10,64位
历史:
过去 Mac 上的 Java 都是由 Apple 自己提供,只支持到 Java 6,并且OS X 10.7 开始系统并不自带(而是可选安装)(原自带的是1.6)。
后来 Apple 加入 OpenJDK 继续支持 Java 6,而 Java 7 将由 Oracle 负责提供。
在终端中输入jav
- javaScript (1)
Array_06
JavaScriptjava浏览器
JavaScript
1、运算符
运算符就是完成操作的一系列符号,它有七类: 赋值运算符(=,+=,-=,*=,/=,%=,<<=,>>=,|=,&=)、算术运算符(+,-,*,/,++,--,%)、比较运算符(>,<,<=,>=,==,===,!=,!==)、逻辑运算符(||,&&,!)、条件运算(?:)、位
- 国内顶级代码分享网站
袁潇含
javajdkoracle.netPHP
现在国内很多开源网站感觉都是为了利益而做的
当然利益是肯定的,否则谁也不会免费的去做网站
&
- Elasticsearch、MongoDB和Hadoop比较
随意而生
mongodbhadoop搜索引擎
IT界在过去几年中出现了一个有趣的现象。很多新的技术出现并立即拥抱了“大数据”。稍微老一点的技术也会将大数据添进自己的特性,避免落大部队太远,我们看到了不同技术之间的边际的模糊化。假如你有诸如Elasticsearch或者Solr这样的搜索引擎,它们存储着JSON文档,MongoDB存着JSON文档,或者一堆JSON文档存放在一个Hadoop集群的HDFS中。你可以使用这三种配
- mac os 系统科研软件总结
张亚雄
mac os
1.1 Microsoft Office for Mac 2011
大客户版,自行搜索。
1.2 Latex (MacTex):
系统环境:https://tug.org/mactex/
&nb
- Maven实战(四)生命周期
AdyZhang
maven
1. 三套生命周期 Maven拥有三套相互独立的生命周期,它们分别为clean,default和site。 每个生命周期包含一些阶段,这些阶段是有顺序的,并且后面的阶段依赖于前面的阶段,用户和Maven最直接的交互方式就是调用这些生命周期阶段。 以clean生命周期为例,它包含的阶段有pre-clean, clean 和 post
- Linux下Jenkins迁移
aijuans
Jenkins
1. 将Jenkins程序目录copy过去 源程序在/export/data/tomcatRoot/ofctest-jenkins.jd.com下面 tar -cvzf jenkins.tar.gz ofctest-jenkins.jd.com &
- request.getInputStream()只能获取一次的问题
ayaoxinchao
requestInputstream
问题:在使用HTTP协议实现应用间接口通信时,服务端读取客户端请求过来的数据,会用到request.getInputStream(),第一次读取的时候可以读取到数据,但是接下来的读取操作都读取不到数据
原因: 1. 一个InputStream对象在被读取完成后,将无法被再次读取,始终返回-1; 2. InputStream并没有实现reset方法(可以重
- 数据库SQL优化大总结之 百万级数据库优化方案
BigBird2012
SQL优化
网上关于SQL优化的教程很多,但是比较杂乱。近日有空整理了一下,写出来跟大家分享一下,其中有错误和不足的地方,还请大家纠正补充。
这篇文章我花费了大量的时间查找资料、修改、排版,希望大家阅读之后,感觉好的话推荐给更多的人,让更多的人看到、纠正以及补充。
1.对查询进行优化,要尽量避免全表扫描,首先应考虑在 where 及 order by 涉及的列上建立索引。
2.应尽量避免在 where
- jsonObject的使用
bijian1013
javajson
在项目中难免会用java处理json格式的数据,因此封装了一个JSONUtil工具类。
JSONUtil.java
package com.bijian.json.study;
import java.util.ArrayList;
import java.util.Date;
import java.util.HashMap;
- [Zookeeper学习笔记之六]Zookeeper源代码分析之Zookeeper.WatchRegistration
bit1129
zookeeper
Zookeeper类是Zookeeper提供给用户访问Zookeeper service的主要API,它包含了如下几个内部类
首先分析它的内部类,从WatchRegistration开始,为指定的znode path注册一个Watcher,
/**
* Register a watcher for a particular p
- 【Scala十三】Scala核心七:部分应用函数
bit1129
scala
何为部分应用函数?
Partially applied function: A function that’s used in an expression and that misses some of its arguments.For instance, if function f has type Int => Int => Int, then f and f(1) are p
- Tomcat Error listenerStart 终极大法
ronin47
tomcat
Tomcat报的错太含糊了,什么错都没报出来,只提示了Error listenerStart。为了调试,我们要获得更详细的日志。可以在WEB-INF/classes目录下新建一个文件叫logging.properties,内容如下
Java代码
handlers = org.apache.juli.FileHandler, java.util.logging.ConsoleHa
- 不用加减符号实现加减法
BrokenDreams
实现
今天有群友发了一个问题,要求不用加减符号(包括负号)来实现加减法。
分析一下,先看最简单的情况,假设1+1,按二进制算的话结果是10,可以看到从右往左的第一位变为0,第二位由于进位变为1。
 
- 读《研磨设计模式》-代码笔记-状态模式-State
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/*
当一个对象的内在状态改变时允许改变其行为,这个对象看起来像是改变了其类
状态模式主要解决的是当控制一个对象状态的条件表达式过于复杂时的情况
把状态的判断逻辑转移到表示不同状态的一系列类中,可以把复杂的判断逻辑简化
如果在
- CUDA程序block和thread超出硬件允许值时的异常
cherishLC
CUDA
调用CUDA的核函数时指定block 和 thread大小,该大小可以是dim3类型的(三维数组),只用一维时可以是usigned int型的。
以下程序验证了当block或thread大小超出硬件允许值时会产生异常!!!GPU根本不会执行运算!!!
所以验证结果的正确性很重要!!!
在VS中创建CUDA项目会有一个模板,里面有更详细的状态验证。
以下程序在K5000GPU上跑的。
- 诡异的超长时间GC问题定位
chenchao051
jvmcmsGChbaseswap
HBase的GC策略采用PawNew+CMS, 这是大众化的配置,ParNew经常会出现停顿时间特别长的情况,有时候甚至长到令人发指的地步,例如请看如下日志:
2012-10-17T05:54:54.293+0800: 739594.224: [GC 739606.508: [ParNew: 996800K->110720K(996800K), 178.8826900 secs] 3700
- maven环境快速搭建
daizj
安装mavne环境配置
一 下载maven
安装maven之前,要先安装jdk及配置JAVA_HOME环境变量。这个安装和配置java环境不用多说。
maven下载地址:http://maven.apache.org/download.html,目前最新的是这个apache-maven-3.2.5-bin.zip,然后解压在任意位置,最好地址中不要带中文字符,这个做java 的都知道,地址中出现中文会出现很多
- PHP网站安全,避免PHP网站受到攻击的方法
dcj3sjt126com
PHP
对于PHP网站安全主要存在这样几种攻击方式:1、命令注入(Command Injection)2、eval注入(Eval Injection)3、客户端脚本攻击(Script Insertion)4、跨网站脚本攻击(Cross Site Scripting, XSS)5、SQL注入攻击(SQL injection)6、跨网站请求伪造攻击(Cross Site Request Forgerie
- yii中给CGridView设置默认的排序根据时间倒序的方法
dcj3sjt126com
GridView
public function searchWithRelated() {
$criteria = new CDbCriteria;
$criteria->together = true; //without th
- Java集合对象和数组对象的转换
dyy_gusi
java集合
在开发中,我们经常需要将集合对象(List,Set)转换为数组对象,或者将数组对象转换为集合对象。Java提供了相互转换的工具,但是我们使用的时候需要注意,不能乱用滥用。
1、数组对象转换为集合对象
最暴力的方式是new一个集合对象,然后遍历数组,依次将数组中的元素放入到新的集合中,但是这样做显然过
- nginx同一主机部署多个应用
geeksun
nginx
近日有一需求,需要在一台主机上用nginx部署2个php应用,分别是wordpress和wiki,探索了半天,终于部署好了,下面把过程记录下来。
1. 在nginx下创建vhosts目录,用以放置vhost文件。
mkdir vhosts
2. 修改nginx.conf的配置, 在http节点增加下面内容设置,用来包含vhosts里的配置文件
#
- ubuntu添加admin权限的用户账号
hongtoushizi
ubuntuuseradd
ubuntu创建账号的方式通常用到两种:useradd 和adduser . 本人尝试了useradd方法,步骤如下:
1:useradd
使用useradd时,如果后面不加任何参数的话,如:sudo useradd sysadm 创建出来的用户将是默认的三无用户:无home directory ,无密码,无系统shell。
顾应该如下操作:
- 第五章 常用Lua开发库2-JSON库、编码转换、字符串处理
jinnianshilongnian
nginxlua
JSON库
在进行数据传输时JSON格式目前应用广泛,因此从Lua对象与JSON字符串之间相互转换是一个非常常见的功能;目前Lua也有几个JSON库,本人用过cjson、dkjson。其中cjson的语法严格(比如unicode \u0020\u7eaf),要求符合规范否则会解析失败(如\u002),而dkjson相对宽松,当然也可以通过修改cjson的源码来完成
- Spring定时器配置的两种实现方式OpenSymphony Quartz和java Timer详解
yaerfeng1989
timerquartz定时器
原创整理不易,转载请注明出处:Spring定时器配置的两种实现方式OpenSymphony Quartz和java Timer详解
代码下载地址:http://www.zuidaima.com/share/1772648445103104.htm
有两种流行Spring定时器配置:Java的Timer类和OpenSymphony的Quartz。
1.Java Timer定时
首先继承jav
- Linux下df与du两个命令的差别?
pda158
linux
一、df显示文件系统的使用情况,与du比較,就是更全盘化。 最经常使用的就是 df -T,显示文件系统的使用情况并显示文件系统的类型。 举比例如以下: [root@localhost ~]# df -T Filesystem Type &n
- [转]SQLite的工具类 ---- 通过反射把Cursor封装到VO对象
ctfzh
VOandroidsqlite反射Cursor
在写DAO层时,觉得从Cursor里一个一个的取出字段值再装到VO(值对象)里太麻烦了,就写了一个工具类,用到了反射,可以把查询记录的值装到对应的VO里,也可以生成该VO的List。
使用时需要注意:
考虑到Android的性能问题,VO没有使用Setter和Getter,而是直接用public的属性。
表中的字段名需要和VO的属性名一样,要是不一样就得在查询的SQL中
- 该学习笔记用到的Employee表
vipbooks
oraclesql工作
这是我在学习Oracle是用到的Employee表,在该笔记中用到的就是这张表,大家可以用它来学习和练习。
drop table Employee;
-- 员工信息表
create table Employee(
-- 员工编号
EmpNo number(3) primary key,
-- 姓