2.官方文档
使用不难,要明白loss是如何计算的需要一定数学功底
(1)L1loss
X:1,2,3
Y:1,2,5
L1loss = (0+0+2) / 3 = 0.6
MSE = (0+0+2^2) / 3 = 1.333
import torch
from torch.nn import L1Loss
inputs = torch.tensor([1, 2, 3], dtype=torch.float32)
targets = torch.tensor([1, 2, 5], dtype=torch.float32)
print(inputs.shape)
inputs = torch.reshape(inputs, (1, 1, 1, 3))
targets = torch.reshape(targets, (1, 1, 1, 3))
print(inputs.shape)
loss = L1Loss(reduction='mean')
result = loss(inputs, targets)
print(result)
loss_mse = nn.MSELoss()
result2 = loss_mse(inputs,targets)
print(result2)
x = torch.tensor([0.1, 0.2, 0.3])
y = torch.tensor([1])
x = torch.reshape(x, (1, 3))
loss_cross = nn.CrossEntropyLoss()
result3 = loss_cross(x,y)
print(result3)
import torchvision
from torch import nn
from torch.nn import Sequential, Conv2d, MaxPool2d, Flatten, Linear
from torch.utils.data import DataLoader
dataset = torchvision.datasets.CIFAR10("data", train=False, download=True,
transform=torchvision.transforms.ToTensor())
dataloader = DataLoader(dataset, batch_size=1)
class Peipei(nn.Module):
def __init__(self) -> None:
super(Peipei, self).__init__()
self.model1 = Sequential(
Conv2d(3, 32, 5, padding=2, stride=1),
MaxPool2d(2),
Conv2d(32, 32, 5, padding=2),
MaxPool2d(2),
Conv2d(32, 64, 5, padding=2),
MaxPool2d(2),
Flatten(),
Linear(1024, 64),
Linear(64, 10)
)
def forward(self, x):
x = self.model1(x)
return x
peipei = Peipei()
loss = nn.CrossEntropyLoss()
for data in dataloader:
imgs, targets = data
outputs = peipei(imgs)
result_loss = loss(outputs,targets)
print(result_loss)
# 反向传播,计算每个节点的梯度/参数,以便于后续选择合适的优化器
result_loss.backward()