C语言拾遗-C语言数据类型-指针

所谓指针,也就是内存的地址;所谓指针变量,也就是保存了内存地址的变量。不过,人们往往不会区分两者的概念,而是混淆在一起使用,在必要的情况下,大家也要注意区分。

指针概念

计算机中所有的数据都必须放在内存中,不同类型的数据占用的字节数不一样,例如 int 占用 4 个字节,char 占用 1 个字节。为了正确地访问这些数据,必须为每个字节都编上号码,就像门牌号、身份证号一样,每个字节的编号是唯一的,根据编号可以准确地找到某个字节。

下图是 4G 内存中每个字节的编号(以十六进制表示):

我们将内存中字节的编号称为地址(Address)或指针(Pointer)。地址从 0 开始依次增加,对于 32 位环境,程序能够使用的内存为 4GB,最小的地址为 0,最大的地址为 0XFFFFFFFF。

一切都是地址

C语言用变量来存储数据,用函数来定义一段可以重复使用的代码,它们最终都要放到内存中才能供 CPU 使用。

数据和代码都以二进制的形式存储在内存中,计算机无法从格式上区分某块内存到底存储的是数据还是代码。当程序被加载到内存后,操作系统会给不同的内存块指定不同的权限,拥有读取和执行权限的内存块就是代码,而拥有读取和写入权限(也可能只有读取权限)的内存块就是数据。

CPU 只能通过地址来取得内存中的代码和数据,程序在执行过程中会告知 CPU 要执行的代码以及要读写的数据的地址。如果程序不小心出错,或者开发者有意为之,在 CPU 要写入数据时给它一个代码区域的地址,就会发生内存访问错误。这种内存访问错误会被硬件和操作系统拦截,强制程序崩溃,程序员没有挽救的机会。

CPU 访问内存时需要的是地址,而不是变量名和函数名!变量名和函数名只是地址的一种助记符,当源文件被编译和链接成可执行程序后,它们都会被替换成地址。编译和链接过程的一项重要任务就是找到这些名称所对应的地址。

假设变量 a、b、c 在内存中的地址分别是 0X1000、0X2000、0X3000,那么加法运算c = a + b;将会被转换成类似下面的形式:

0X3000 = (0X1000) + (0X2000);

( )表示取值操作,整个表达式的意思是,取出地址 0X1000 和 0X2000 上的值,将它们相加,把相加的结果赋值给地址为 0X3000 的内存。

变量名和函数名为我们提供了方便,让我们在编写代码的过程中可以使用易于阅读和理解的英文字符串,不用直接面对二进制地址,需要注意的是,虽然变量名函数名字符串名数组名在本质上是一样的,它们都是地址的助记符,但在编写代码的过程中,我们认为变量名表示的是数据本身,而函数名、字符串名和数组名表示的是代码块或数据块的首地址。

C语言指针变量的定义和使用

 

在C语言中,允许用一个变量来存放指针,这种变量称为指针变量。指针变量的值就是某份数据的地址,这样的一份数据可以是数组、字符串、函数,也可以是另外的一个普通变量或指针变量。

现在假设有一个 char 类型的变量 c,它存储了字符 'K'(ASCII码为十进制数 75),并占用了地址为 0X11A 的内存(地址通常用十六进制表示)。另外有一个指针变量 p,它的值为 0X11A,正好等于变量 c 的地址,这种情况我们就称 p 指向了 c,或者说 p 是指向变量 c 的指针

定义指针变量

定义指针变量与定义普通变量非常类似,不过要在变量名前面加星号*,格式为:

datatype *name;

或者

datatype *name = value;

*表示这是一个指针变量,datatype表示该指针变量所指向的数据的类型 。例如:

int *p1;

p1 是一个指向 int 类型数据的指针变量,至于 p1 究竟指向哪一份数据,应该由赋予它的值决定。再如:

int a = 100;
int *p_a = &a;

在定义指针变量 p_a 的同时对它进行初始化,并将变量 a 的地址赋予它,此时 p_a 就指向了 a。值得注意的是,p_a 需要的一个地址,a 前面必须要加取地址符&,否则是不对的。

和普通变量一样,指针变量也可以被多次写入,只要你想,随时都能够改变指针变量的值,请看下面的代码:

//定义普通变量
float a = 99.5, b = 10.6;
char c = '@', d = '#';
//定义指针变量
float *p1 = &a;
char *p2 = &c;
//修改指针变量的值
p1 = &b;
p2 = &d;

*是一个特殊符号,表明一个变量是指针变量,定义 p1、p2 时必须带*。而给 p1、p2 赋值时,因为已经知道了它是一个指针变量,就没必要多此一举再带上*,后边可以像使用普通变量一样来使用指针变量。也就是说,定义指针变量时必须带*,给指针变量赋值时不能带*

假设变量 a、b、c、d 的地址分别为 0X1000、0X1004、0X2000、0X2004,下面的示意图很好地反映了 p1、p2 指向的变化:

C语言拾遗-C语言数据类型-指针_第1张图片

需要强调的是,p1、p2 的类型分别是float*char*,而不是floatchar,它们是完全不同的数据类型,读者要引起注意。

指针变量也可以连续定义,例如:

int *a, *b, *c;  //a、b、c 的类型都是 int*

注意每个变量前面都要带*。如果写成下面的形式,那么只有 a 是指针变量,b、c 都是类型为 int 的普通变量:

int *a, b, c;

通过指针变量取得数据

指针变量存储了数据的地址,通过指针变量能够获得该地址上的数据,格式为:

*pointer;

这里的*称为指针运算符,用来取得某个地址上的数据,请看下面的例子:

#include 
int main()
{
    int a = 15;
    int *p = &a;
    printf("%d, %d\n", a, *p);  //两种方式都可以输出a的值
    return 0;
}

运行结果:
15, 15

假设 a 的地址是 0X1000,p 指向 a 后,p 本身的值也会变为 0X1000,*p 表示获取地址 0X1000 上的数据,也即变量 a 的值。从运行结果看,*p 和 a 是等价的。

上节我们说过,CPU 读写数据必须要知道数据在内存中的地址,普通变量和指针变量都是地址的助记符,虽然通过 *p 和 a 获取到的数据一样,但它们的运行过程稍有不同:a 只需要一次运算就能够取得数据,而 *p 要经过两次运算,多了一层“间接”。

假设变量 a、p 的地址分别为 0X1000、0XF0A0,它们的指向关系如下图所示:

C语言拾遗-C语言数据类型-指针_第2张图片

程序被编译和链接后,a、p 被替换成相应的地址。使用 *p 的话,要先通过地址 0XF0A0 取得变量 p 本身的值,这个值是变量 a 的地址,然后再通过这个值取得变量 a 的数据,前后共有两次运算;而使用 a 的话,可以通过地址 0X1000 直接取得它的数据,只需要一步运算。

也就是说,使用指针是间接获取数据,使用变量名是直接获取数据,前者比后者的代价要高。

指针除了可以获取内存上的数据,也可以修改内存上的数据,例如:

#include 
int main()
{
    int a = 15, b = 99, c = 222;
    int *p = &a;  //定义指针变量
    *p = b;  //通过指针变量修改内存上的数据
    c = *p;  //通过指针变量获取内存上的数据
    printf("%d, %d, %d, %d\n", a, b, c, *p);
    return 0;
}

运行结果:
99, 99, 99, 99

*p 代表的是 a 中的数据,它等价于 a,可以将另外的一份数据赋值给它,也可以将它赋值给另外的一个变量。

*在不同的场景下有不同的作用:*可以用在指针变量的定义中,表明这是一个指针变量,以和普通变量区分开;使用指针变量时在前面加*表示获取指针指向的数据,或者说表示的是指针指向的数据本身。

也就是说,定义指针变量时的*和使用指针变量时的*意义完全不同。以下面的语句为例:

int *p = &a;
*p = 100;

第1行代码中*用来指明 p 是一个指针变量,第2行代码中*用来获取指针指向的数据。

需要注意的是,给指针变量本身赋值时不能加*。修改上面的语句:

int *p;
p = &a;
*p = 100;

第2行代码中的 p 前面就不能加*

指针变量也可以出现在普通变量能出现的任何表达式中,例如:

int x, y, *px = &x, *py = &y;
y = *px + 5;  //表示把x的内容加5并赋给y,*px+5相当于(*px)+5
y = ++*px;  //px的内容加上1之后赋给y,++*px相当于++(*px)
y = *px++;  //相当于y=(*px)++
py = px;  //把一个指针的值赋给另一个指针

C语言指针变量的运算

指针变量保存的是地址,而地址本质上是一个整数,所以指针变量可以进行部分运算,例如加法、减法、比较等,请看下面的代码:

#include 
int main()
{
    int    a = 10,   *pa = &a, *paa = &a;
    double b = 99.9, *pb = &b;
    char   c = '@',  *pc = &c;
    //最初的值
    printf("&a=%#X, &b=%#X, &c=%#X\n", &a, &b, &c);
    printf("pa=%#X, pb=%#X, pc=%#X\n", pa, pb, pc);
    //加法运算
    pa++; pb++; pc++;
    printf("pa=%#X, pb=%#X, pc=%#X\n", pa, pb, pc);
    //减法运算
    pa -= 2; pb -= 2; pc -= 2;
    printf("pa=%#X, pb=%#X, pc=%#X\n", pa, pb, pc);
    //比较运算
    if(pa == paa){
        printf("%d\n", *paa);
    }else{
        printf("%d\n", *pa);
    }
    return 0;
}

运行结果:

&a=0X28FF44, &b=0X28FF30, &c=0X28FF2B
pa=0X28FF44, pb=0X28FF30, pc=0X28FF2B
pa=0X28FF48, pb=0X28FF38, pc=0X28FF2C
pa=0X28FF40, pb=0X28FF28, pc=0X28FF2A
2686784

从运算结果可以看出:pa、pb、pc 每次加 1,它们的地址分别增加 4、8、1,正好是 int、double、char 类型的长度;减 2 时,地址分别减少 8、16、2,正好是 int、double、char 类型长度的 2 倍。

这很奇怪,指针变量加减运算的结果跟数据类型的长度有关,而不是简单地加 1 或减 1,这是为什么呢?

以 a 和 pa 为例,a 的类型为 int,占用 4 个字节,pa 是指向 a 的指针,如下图所示:

刚开始的时候,pa 指向 a 的开头,通过 *pa 读取数据时,从 pa 指向的位置向后移动 4 个字节,把这 4 个字节的内容作为要获取的数据,这 4 个字节也正好是变量 a 占用的内存。

如果pa++;使得地址加 1 的话,就会变成如下图所示的指向关系:

C语言拾遗-C语言数据类型-指针_第3张图片

这个时候 pa 指向整数 a 的中间,*pa 使用的是红色虚线画出的 4 个字节,其中前 3 个是变量 a 的,后面 1 个是其它数据的,把它们“搅和”在一起显然没有实际的意义,取得的数据也会非常怪异。

如果pa++;使得地址加 4 的话,正好能够完全跳过整数 a,指向它后面的内存,如下图所示:

C语言拾遗-C语言数据类型-指针_第4张图片

我们知道,数组中的所有元素在内存中是连续排列的,如果一个指针指向了数组中的某个元素,那么加 1 就表示指向下一个元素,减 1 就表示指向上一个元素,这样指针的加减运算就具有了现实的意义。

不过C语言并没有规定变量的存储方式,如果连续定义多个变量,它们有可能是挨着的,也有可能是分散的,这取决于变量的类型、编译器的实现以及具体的编译模式,所以对于指向普通变量的指针,我们往往不进行加减运算,虽然编译器并不会报错,但这样做没有意义,因为不知道它后面指向的是什么数据。

指针变量除了可以参与加减运算,还可以参与比较运算。当对指针变量进行比较运算时,比较的是指针变量本身的值,也就是数据的地址。如果地址相等,那么两个指针就指向同一份数据,否则就指向不同的数据。

上面的代码(第一个例子)在比较 pa 和 paa 的值时,pa 已经指向了 a 的上一份数据,所以它们不相等。而 a 的上一份数据又不知道是什么,所以会导致 printf() 输出一个没有意义的数,这正好印证了上面的观点,不要对指向普通变量的指针进行加减运算。

另外需要说明的是,不能对指针变量进行乘法、除法、取余等其他运算,除了会发生语法错误,也没有实际的含义。

C语言数组指针

数组(Array)是一系列具有相同类型的数据的集合,每一份数据叫做一个数组元素(Element)。数组中的所有元素在内存中是连续排列的,整个数组占用的是一块内存。以int arr[] = { 99, 15, 100, 888, 252 };为例,该数组在内存中的分布如下图所示:

定义数组时,要给出数组名和数组长度,数组名可以认为是一个指针,它指向数组的第 0 个元素。在C语言中,我们将第 0 个元素的地址称为数组的首地址。以上面的数组为例,下图是 arr 的指向:

数组名的本意是表示整个数组,也就是表示多份数据的集合,但在使用过程中经常会转换为指向数组第 0 个元素的指针,所以上面使用了“认为”一词,表示数组名和数组首地址并不总是等价。

如果一个指针指向了数组,我们就称它为数组指针(Array Pointer)。

数组指针指向的是数组中的一个具体元素,而不是整个数组,所以数组指针的类型和数组元素的类型有关,上面的例子中,p 指向的数组元素是 int 类型,所以 p 的类型必须也是int *

反过来想,p 并不知道它指向的是一个数组,p 只知道它指向的是一个整数,究竟如何使用 p 取决于程序员的编码。

引入数组指针后,我们就有两种方案来访问数组元素了,一种是使用下标,另外一种是使用指针。

  1. 使用下标也就是采用 arr[i] 的形式访问数组元素。如果 p 是指向数组 arr 的指针,那么也可以使用 p[i] 来访问数组元素,它等价于 arr[i]
  2. 使用指针也就是使用 *(p+i) 的形式访问数组元素。另外数组名本身也是指针,也可以使用 *(arr+i) 来访问数组元素,它等价于 *(p+i)。

不管是数组名还是数组指针,都可以使用上面的两种方式来访问数组元素。不同的是,数组名是常量,它的值不能改变,而数组指针是变量(除非特别指明它是常量),它的值可以任意改变。也就是说,数组名只能指向数组的开头,而数组指针可以先指向数组开头,再指向其他元素。

C语言指针变量作为函数参数

在C语言中,函数的参数不仅可以是整数、小数、字符等具体的数据,还可以是指向它们的指针。用指针变量作函数参数可以将函数外部的地址传递到函数内部,使得在函数内部可以操作函数外部的数据,并且这些数据不会随着函数的结束而被销毁。

像数组、字符串、动态分配的内存等都是一系列数据的集合,没有办法通过一个参数全部传入函数内部,只能传递它们的指针,在函数内部通过指针来影响这些数据集合。

有的时候,对于整数、小数、字符等基本类型数据的操作也必须要借助指针,一个典型的例子就是交换两个变量的值。有些初学者可能会使用下面的方法来交换两个变量的值:

#include 
void swap(int a, int b)
{
    int temp;  //临时变量
    temp = a;
    a = b;
    b = temp;
}
int main()
{
    int a = 66, b = 99;
    swap(a, b);
    printf("a = %d, b = %d\n", a, b);
    return 0;
}

运行结果:

a = 66, b = 99

从结果可以看出,a、b 的值并没有发生改变,交换失败。这是因为 swap() 函数内部的 a、b 和 main() 函数内部的 a、b 是不同的变量,占用不同的内存,它们除了名字一样,没有其他任何关系,swap() 交换的是它内部 a、b 的值,不会影响它外部(main() 内部) a、b 的值。

改用指针变量作参数后就很容易解决上面的问题:

#include 
void swap(int *p1, int *p2)
{
    int temp;  //临时变量
    temp = *p1;
    *p1 = *p2;
    *p2 = temp;
}
int main()
{
    int a = 66, b = 99;
    swap(&a, &b);
    printf("a = %d, b = %d\n", a, b);
    return 0;
}

运行结果:

a = 99, b = 66

调用 swap() 函数时,将变量 a、b 的地址分别赋值给 p1、p2,这样 *p1、*p2 代表的就是变量 a、b 本身,交换 *p1、*p2 的值也就是交换 a、b 的值。函数运行结束后虽然会将 p1、p2 销毁,但它对外部 a、b 造成的影响是“持久化”的,不会随着函数的结束而“恢复原样”。

需要注意的是临时变量 temp,它的作用特别重要,因为执行*p1 = *p2;语句后 a 的值会被 b 的值覆盖,如果不先将 a 的值保存起来以后就找不到了。

这就好比拿来一瓶可乐和一瓶雪碧,要想把可乐倒进雪碧瓶、把雪碧倒进可乐瓶里面,就必须先找一个杯子,将两者之一先倒进杯子里面,再从杯子倒进瓶子里面。这里的杯子,就是一个“临时变量”,虽然只是倒倒手,但是也不可或缺。

用数组作函数参数

数组是一系列数据的集合,无法通过参数将它们一次性传递到函数内部,如果希望在函数内部操作数组,必须传递数组指针。下面的例子定义了一个函数 max(),用来查找数组中值最大的元素:

#include 
int max(int *intArr, int len)
{
    int i, maxValue = intArr[0];  //假设第0个元素是最大值
    for(i=1; i

运行结果:

12 55 30 8 93 27↙
Max value is 93!

参数 intArr 仅仅是一个数组指针,在函数内部无法通过这个指针获得数组长度,必须将数组长度作为函数参数传递到函数内部。数组 nums 的每个元素都是整数,scanf() 在读取用户输入的整数时,要求给出存储它的内存的地址,nums+i就是第 i 个数组元素的地址。

用数组做函数参数时,参数也能够以“真正”的数组形式给出。例如对于上面的 max() 函数,它的参数可以写成下面的形式:

int max(int intArr[6], int len)
{
    int i, maxValue = intArr[0];  //假设第0个元素是最大值
    for(i=1; i

int intArr[6]好像定义了一个拥有 6 个元素的数组,调用 max() 时可以将数组的所有元素“一股脑”传递进来。读者也可以省略数组长度,把形参简写为下面的形式:

int max(int intArr[], int len)
{
    int i, maxValue = intArr[0];  //假设第0个元素是最大值
    for(i=1; i

int intArr[]虽然定义了一个数组,但没有指定数组长度,好像可以接受任意长度的数组。

实际上这两种形式的数组定义都是假象,不管是int intArr[6]还是int intArr[]都不会创建一个数组出来,编译器也不会为它们分配内存,实际的数组是不存在的,它们最终还是会转换为int *intArr这样的指针。这就意味着,两种形式都不能将数组的所有元素“一股脑”传递进来,大家还得规规矩矩使用数组指针。

int intArr[6]这种形式只能说明函数期望用户传递的数组有 6 个元素,并不意味着数组只能有 6 个元素,真正传递的数组可以有少于或多于 6 个的元素。

需要强调的是,不管使用哪种方式传递数组,都不能在函数内部求得数组长度,因为 intArr 仅仅是一个指针,而不是真正的数组,所以必须要额外增加一个参数来传递数组长度。

C语言为什么不允许直接传递数组的所有元素,而必须传递数组指针呢?

参数的传递本质上是一次赋值的过程,赋值就是对内存进行拷贝。所谓内存拷贝,是指将一块内存上的数据复制到另一块内存上。

对于像 int、float、char 等基本类型的数据,它们占用的内存往往只有几个字节,对它们进行内存拷贝非常快速。而数组是一系列数据的集合,数据的数量没有限制,可能很少,也可能成千上万,对它们进行内存拷贝有可能是一个漫长的过程,会严重拖慢程序的效率,为了防止技艺不佳的程序员写出低效的代码,C语言没有从语法上支持数据集合的直接赋值。

除了C语言,C++、Java、Python 等其它语言也禁止对大块内存进行拷贝,在底层都使用类似指针的方式来实现。

C语言指针作为函数返回值

C语言允许函数的返回值是一个指针(地址),我们将这样的函数称为指针函数。下面的例子定义了一个函数 strlong(),用来返回两个字符串中较长的一个:

#include 
#include 
char *strlong(char *str1, char *str2)
{
    if(strlen(str1) >= strlen(str2))
    {
        return str1;
    }
    else
    {
        return str2;
    }
}
int main()
{
    char str1[30], str2[30], *str;
    gets(str1);
    gets(str2);
    str = strlong(str1, str2);
    printf("Longer string: %s\n", str);
    return 0;
}

运行结果:

C Language↙
c.biancheng.net↙
Longer string: c.biancheng.net

用指针作为函数返回值时需要注意的一点是,函数运行结束后会销毁在它内部定义的所有局部数据,包括局部变量、局部数组和形式参数,函数返回的指针请尽量不要指向这些数据,C语言没有任何机制来保证这些数据会一直有效,它们在后续使用过程中可能会引发运行时错误。请看下面的例子:

#include 
int *func()
{
    int n = 100;
    return &n;
}
int main()
{
    int *p = func(), n;
    n = *p;
    printf("value = %d\n", n);
    return 0;
}

运行结果:

value = 100

n 是 func() 内部的局部变量,func() 返回了指向 n 的指针,根据上面的观点,func() 运行结束后 n 将被销毁,使用 *p 应该获取不到 n 的值。但是从运行结果来看,我们的推理好像是错误的,func() 运行结束后 *p 依然可以获取局部变量 n 的值,这个上面的观点不是相悖吗?

为了进一步看清问题的本质,不妨将上面的代码稍作修改,在第9~10行之间增加一个函数调用,看看会有什么效果:

#include 
int *func()
{
    int n = 100;
    return &n;
}
int main()
{
    int *p = func(), n;
    printf("c.biancheng.net\n");
    n = *p;
    printf("value = %d\n", n);
    return 0;
}

运行结果:

c.biancheng.net
value = -2

可以看到,现在 p 指向的数据已经不是原来 n 的值了,它变成了一个毫无意义的甚至有些怪异的值。与前面的代码相比,该段代码仅仅是在 *p 之前增加了一个函数调用,这一细节的不同却导致运行结果有天壤之别,究竟是为什么呢?

前面我们说函数运行结束后会销毁所有的局部数据,这个观点并没错,大部分C语言教材也都强调了这一点。但是,这里所谓的销毁并不是将局部数据所占用的内存全部抹掉,而是程序放弃对它的使用权限,弃之不理,后面的代码可以随意使用这块内存。对于上面的两个例子,func() 运行结束后 n 的内存依然保持原样,值还是 100,如果使用及时也能够得到正确的数据,如果有其它函数被调用就会覆盖这块内存,得到的数据就失去了意义。

第一个例子在调用其他函数之前使用 *p 抢先获得了 n 的值并将它保存起来,第二个例子显然没有抓住机会,有其他函数被调用后才使用 *p 获取数据,这个时候已经晚了,内存已经被后来的函数覆盖了,而覆盖它的究竟是一份什么样的数据我们无从推断(一般是一个没有意义甚至有些怪异的值)。

C语言二级指针

指针可以指向一份普通类型的数据,例如 int、double、char 等,也可以指向一份指针类型的数据,例如 int *、double *、char * 等。如果一个指针指向的是另外一个指针,我们就称它为二级指针,或者指向指针的指针。

假设有一个 int 类型的变量 a,p1是指向 a 的指针变量,p2 又是指向 p1 的指针变量,它们的关系如下图所示:

将这种关系转换为C语言代码:

int a =100;
int *p1 = &a;
int **p2 = &p1;

指针变量也是一种变量,也会占用存储空间,也可以使用&获取它的地址。C语言不限制指针的级数,每增加一级指针,在定义指针变量时就得增加一个星号*。p1 是一级指针,指向普通类型的数据,定义时有一个*;p2 是二级指针,指向一级指针 p1,定义时有两个*

如果我们希望再定义一个三级指针 p3,让它指向 p2,那么可以这样写:

int ***p3 = &p2;

四级指针也是类似的道理:

int ****p4 = &p3;

实际开发中会经常使用一级指针和二级指针,几乎用不到高级指针。

想要获取指针指向的数据时,一级指针加一个*,二级指针加两个*,三级指针加三个*,以此类推,请看代码:

#include 
int main()
{
    int a =100;
    int *p1 = &a;
    int **p2 = &p1;
    int ***p3 = &p2;
    printf("%d, %d, %d, %d\n", a, *p1, **p2, ***p3);
    printf("&p2 = %#X, p3 = %#X\n", &p2, p3);
    printf("&p1 = %#X, p2 = %#X, *p3 = %#X\n", &p1, p2, *p3);
    printf(" &a = %#X, p1 = %#X, *p2 = %#X, **p3 = %#X\n", &a, p1, *p2, **p3);
    return 0;
}

运行结果:

100, 100, 100, 100
&p2 = 0X28FF3C, p3 = 0X28FF3C
&p1 = 0X28FF40, p2 = 0X28FF40, *p3 = 0X28FF40
 &a = 0X28FF44, p1 = 0X28FF44, *p2 = 0X28FF44, **p3 = 0X28FF44

以三级指针 p3 为例来分析上面的代码。***p3等价于*(*(*p3))。*p3 得到的是 p2 的值,也即 p1 的地址;*(*p3) 得到的是 p1 的值,也即 a 的地址;经过三次“取值”操作后,*(*(*p3)) 得到的才是 a 的值。

假设 a、p1、p2、p3 的地址分别是 0X00A0、0X1000、0X2000、0X3000,它们之间的关系可以用下图来描述:

方框里面是变量本身的值,方框下面是变量的地址。

C语言空指针NULL以及void指针

空指针 NULL

一个指针变量可以指向计算机中的任何一块内存,不管该内存有没有被分配,也不管该内存有没有使用权限,只要把地址给它,它就可以指向,C语言没有一种机制来保证指向的内存的正确性,程序员必须自己提高警惕。

很多初学者会在无意间对没有初始化的指针进行操作,这是非常危险的,请看下面的例子:

#include 
int main()
{
    char *str;
    gets(str);
    printf("%s\n", str);
    return 0;
}

这段程序没有语法错误,能够通过编译和链接,但当用户输入完字符串并按下回车键时就会发生错误,在 Linux 下表现为段错误(Segment Fault),在 Windows 下程序直接崩溃。如果你足够幸运,或者输入的字符串少,也可能不报错,这都是未知的。

前面我们讲过,未初始化的局部变量的值是不确定的,C语言并没有对此作出规定,不同的编译器有不同的实现,我曾警告大家不要直接使用未初始化的局部变量。上面的代码中,str 就是一个未初始化的局部变量,它的值是不确定的,究竟指向哪块内存也是未知的,大多数情况下这块内存没有被分配或者没有读写权限,使用 gets() 函数向它里面写入数据显然是错误的。

我强烈建议对没有初始化的指针赋值为 NULL,例如:

char *str = NULL;

NULL 是“零值、等于零”的意思,在C语言中表示空指针。从表面上理解,空指针是不指向任何数据的指针,是无效指针,程序使用它不会产生效果。注意区分大小写,null 没有任何特殊含义,只是一个普通的标识符。

很多库函数都对传入的指针做了判断,如果是空指针就不做任何操作,或者给出提示信息。更改上面的代码,给 str 赋值 NULL,看看会有什么效果:

#include 
int main()
{
    char *str = NULL;
    gets(str);
    printf("%s\n", str);
    return 0;
}

 

运行程序后发现,还未等用户输入任何字符,printf() 就直接输出了(null)。我们有理由据此推断,gets() 和 printf() 都对空指针做了特殊处理:

  • gets() 不会让用户输入字符串,也不会向指针指向的内存中写入数据;
  • printf() 不会读取指针指向的内容,只是简单地给出提示,让程序员意识到使用了一个空指针。

我们在自己定义的函数中也可以进行类似的判断,例如:

void func(char *p)
{
    if(p == NULL)
    {
        printf("(null)\n");
    }
    else
    {
        printf("%s\n", p);
    }
}

这样能够从很大程度上增加程序的健壮性,防止对空指针进行无意义的操作。

其实,NULL 是在stdio.h中定义的一个宏,它的具体内容为:

#define NULL ((void *)0)

(void *)0表示把数值 0 强制转换为void *类型,最外层的( )把宏定义的内容括起来,防止发生歧义。从整体上来看,NULL 指向了地址为 0 的内存,而不是前面说的不指向任何数据。

在进程的虚拟地址空间中,最低地址处有一段内存区域被称为保留区,这个区域不存储有效数据,也不能被用户程序访问,将 NULL 指向这块区域很容易检测到违规指针。

注意,C语言没有规定 NULL 的指向,只是大部分标准库约定成俗地将 NULL 指向 0,所以不要将 NULL 和 0 等同起来,例如下面的写法是不专业的:

int *p = 0;

而应该坚持写为:

int *p = NULL;

注意 NULL 和 NUL 的区别:NULL 表示空指针,是一个宏定义,可以在代码中直接使用。而 NUL 表示字符串的结束标志 '\0',它是ASCII码表中的第 0 个字符。NUL 没有在C语言中定义,仅仅是对 '\0' 的称呼,不能在代码中直接使用。

void 指针

对于空指针 NULL 的宏定义内容,上面只是对((void *)0)作了粗略的介绍,这里重点说一下void *的含义。void 用在函数定义中可以表示函数没有返回值或者没有形式参数,用在这里表示指针指向的数据的类型是未知的。

也就是说,void *表示一个有效指针,它确实指向实实在在的数据,只是数据的类型尚未确定,在后续使用过程中一般要进行强制类型转换。

C语言动态内存分配函数 malloc() 的返回值就是void *类型,在使用时要进行强制类型转换,请看下面的例子:

#include 
int main()
{
    //分配可以保存30个字符的内存,并把返回的指针转换为 char *
    char *str = (char *)malloc(sizeof(char) * 30);
    gets(str);
    printf("%s\n", str);
    return 0;
}

运行结果:

c.biancheng.net↙
c.biancheng.net

数组和指针不等价

通过前面的讲解,相信很多读者都会认为数组和指针是等价的,数组名表示数组的首地址。不幸的是,这是一种非常危险的想法,并不完全正确,前面我们将数组和指针等价起来是为了方便大家理解(在大多数情况下数组名确实可以当做指针使用),不至于被指针难倒,这节请大家放弃这种观念,我将会颠覆你的认知。

数组和指针不等价的一个典型案例就是求数组的长度,这个时候只能使用数组名,不能使用数组指针,前面我们已经强调过了,这里不妨再来演示一下:

#include 
int main()
{
    int a[6] = {0, 1, 2, 3, 4, 5};
    int *p = a;
    int len_a = sizeof(a) / sizeof(int);
    int len_p = sizeof(p) / sizeof(int);
    printf("len_a = %d, len_p = %d\n", len_a, len_p);
    return 0;
}

运行结果:

len_a = 6, len_p = 1

数组是一系列数据的集合,没有开始和结束标志,p 仅仅是一个指向 int 类型的指针,编译器不知道它指向的是一个整数还是一堆整数,对 p 使用 sizeof 求得的是指针变量本身的长度。也就是说,编译器并没有把 p 和数组关联起来,p 仅仅是一个指针变量,不管它指向哪里,sizeof 求得的永远是它本身所占用的字节数。

站在编译器的角度讲,变量名、数组名都是一种符号,它们最终都要和数据绑定起来。变量名用来指代一份数据,数组名用来指代一组数据(数据集合),它们都是有类型的,以便推断出所指代的数据的长度。

对,数组也有类型,这是很多读者没有意识到的,大部分C语言书籍对这一点也含糊其辞!我们可以将 int、float、char 等理解为基本类型,将数组理解为由基本类型派生得到的稍微复杂一些的类型。sizeof 就是根据符号的类型来计算长度的。对于数组 a,它的类型是int [6],表示这是一个拥有 6 个 int 数据的集合,1 个 int 的长度为 4,6 个 int 的长度为 4×6 = 24,sizeof 很容易求得。对于指针变量 p,它的类型是int *,在 32 位环境下长度为 4,在 64 位环境下长度为 8。

归根结底,a 和 p 这两个符号的类型不同,指代的数据也不同,它们不是一码事,sizeof 是根据符号类型来求长度的,a 和 p 的类型不同,求得的长度自然也不一样。

对于二维数组,也是类似的道理,例如int a[3][3]={1, 2, 3, 4, 5, 6, 7, 8, 9};,它的类型是int [3][3],长度是 4×3×3 = 36,读者可以亲自测试。

站在哲学的高度看问题

  • 编程语言的目的是为了将计算机指令(机器语言)抽象成人类能够理解的自然语言,让程序员能够更加容易地管理和操作各种计算机资源,这些计算机资源最终表现为编程语言中的各种符号和语法规则。
  • 整数、小数、数组、指针等不同类型的数据都是对内存的抽象,它们的名字用来指代不同的内存块,程序员在编码过程中不需要直接面对内存,使用这些名字将更加方便。
  • 编译器在编译过程中会创建一张专门的表格用来保存名字以及名字对应的数据类型、地址、作用域等信息,sizeof 是一个操作符,不是函数,使用 sizeof 时可以从这张表格中查询到符号的长度。
  • 与普通变量名相比,数组名既有一般性也有特殊性:一般性表现在数组名也用来指代特定的内存块,也有类型和长度;特殊性表现在数组名有时候会转换为一个指针,而不是它所指代的数据本身的值。

数组到底在什么时候会转换为指针

数组名的本意是表示一组数据的集合,它和普通变量一样,都用来指代一块内存,但在使用过程中,数组名有时候会转换为指向数据集合的指针(地址),而不是表示数据集合本身,这在前面的例子中已经被多次证实。

数据集合包含了多份数据,直接使用一个集合没有明确的含义,将数组名转换为指向数组的指针后,可以很容易地访问其中的任何一份数据,使用时的语义更加明确。

C语言标准规定,当数组名作为数组定义的标识符(也就是定义或声明数组时)、sizeof 或 & 的操作数时,它才表示整个数组本身,在其他的表达式中,数组名会被转换为指向第 0 个元素的指针(地址)。

数组和指针的关系颇像诗和词的关系,它们都是一种文学形式,有不少共同之处,但在实际的表现手法上又各有特色。

再谈数组下标[ ]

C语言标准还规定,数组下标与指针的偏移量相同。通俗地理解,就是对数组下标的引用总是可以写成“一个指向数组的起始地址的指针加上偏移量”。假设现在有一个数组 a 和指针变量 p,它们的定义形式为:

int a = {1, 2, 3, 4, 5}, *p, i = 2;

读者可以通过以下任何一种方式来访问 a[i]:

p = a;
p[i];

p = a;
*(p + i);

p = a + i;
*p;

对数组的引用 a[i] 在编译时总是被编译器改写成*(a+i)的形式,C语言标准也要求编译器必须具备这种行为。

取下标操作符[ ]是建立在指针的基础上,它的作用是使一个指针和一个整数相加,产生出一个新的指针,然后从这个新指针(新地址)上取得数据;假设指针的类型为T *,所产生的结果的类型就是T

取下标操作符的两个操作数是可以交换的,它并不在意操作数的先后顺序,就像在加法中 3+5 和 5+3 并没有什么不一样。以上面的数组 a 为例,如果希望访问第 3 个元素,那么可以写作a[3],也可以写作3[a],这两种形式都是正确的,只不过后面的形式从不曾使用,它除了可以把初学者搞晕之外,实在没有什么实际的意义。

a[3] 等价于 *(a + 3),3[a] 等价于 *(3 + a),仅仅是把加法的两个操作数调换了位置。

使用下标时,编译器会自动把下标的步长调整到数组元素的大小。数组 a 中每个元素都是 int 类型,长度为 4 个字节,那么a[i+1]a[i]在内存中的距离是 4(而不是 1)。

数组作函数参数

C语言标准规定,作为“类型的数组”的形参应该调整为“类型的指针”。在函数形参定义这个特殊情况下,编译器必须把数组形式改写成指向数组第 0 个元素的指针形式。编译器只向函数传递数组的地址,而不是整个数组的拷贝。

这种隐式转换意味着下面三种形式的函数定义是完全等价的:

void func(int *parr){ ...... }
void func(int arr[]){ ...... }
void func(int arr[5]){ ...... }

在函数内部,arr 会被转换成一个指针变量,编译器为 arr 分配 4 个字节的内存,用 sizeof(arr) 求得的是指针变量的长度,而不是数组长度。要想在函数内部获得数组长度必须额外增加一个参数,在调用函数之前求得数组长度。

参数传递是一次赋值的过程,赋值也是一个表达式,函数调用时不管传递的是数组名还是数组指针,效果都是一样的,相当于给一个指针变量赋值。

把作为形参的数组和指针等同起来是出于效率方面的考虑。数组是若干类型相同的数据的集合,数据的数目没有限制,可能只有几个,也可能成千上万,如果要传递整个数组,无论在时间还是内存空间上的开销都可能非常大。而且绝大部分情况下,我们其实并不需要整个数组的拷贝,我们只想告诉函数在那一时刻对哪个特定的数组感兴趣。

C语言指针数组

如果一个数组中的所有元素保存的都是指针,那么我们就称它为指针数组。指针数组的定义形式一般为:

dataType *arrayName[length];

[ ]的优先级高于*,该定义形式应该理解为:

dataType *(arrayName[length]);

括号里面说明arrayName是一个数组,包含了length个元素,括号外面说明每个元素的类型为dataType *

除了每个元素的数据类型不同,指针数组和普通数组在其他方面都是一样的,下面是一个简单的例子:

#include 
int main()
{
    int a = 16, b = 932, c = 100;
    //定义一个指针数组
    int *arr[3] = {&a, &b, &c};//也可以不指定长度,直接写作 int *arr[]
    //定义一个指向指针数组的指针
    int **parr = arr;
    printf("%d, %d, %d\n", *arr[0], *arr[1], *arr[2]);
    printf("%d, %d, %d\n", **(parr+0), **(parr+1), **(parr+2));
    return 0;
}

运行结果:

16, 932, 100
16, 932, 100

arr 是一个指针数组,它包含了 3 个元素,每个元素都是一个指针,在定义 arr 的同时,我们使用变量 a、b、c 的地址对它进行了初始化,这和普通数组是多么地类似。

parr 是指向数组 arr 的指针,确切地说是指向 arr 第 0 个元素的指针,它的定义形式应该理解为int *(*parr),括号中的*表示 parr 是一个指针,括号外面的int *表示 parr 指向的数据的类型。arr 第 0 个元素的类型为 int *,所以在定义 parr 时要加两个 *。

第一个 printf() 语句中,arr[i] 表示获取第 i 个元素的值,该元素是一个指针,还需要在前面增加一个 * 才能取得它指向的数据,也即 *arr[i] 的形式。

第二个 printf() 语句中,parr+i 表示第 i 个元素的地址,*(parr+i) 表示获取第 i 个元素的值(该元素是一个指针),**(parr+i) 表示获取第 i 个元素指向的数据。

C语言函数指针

一个函数总是占用一段连续的内存区域,函数名在表达式中有时也会被转换为该函数所在内存区域的首地址,这和数组名非常类似。我们可以把函数的这个首地址(或称入口地址)赋予一个指针变量,使指针变量指向函数所在的内存区域,然后通过指针变量就可以找到并调用该函数。这种指针就是函数指针

函数指针的定义形式为:

returnType (*pointerName)(param list);

returnType 为函数返回值类型,pointerNmae 为指针名称,param list 为函数参数列表。参数列表中可以同时给出参数的类型和名称,也可以只给出参数的类型,省略参数的名称,这一点和函数原型非常类似。

注意( )的优先级高于*,第一个括号不能省略,如果写作returnType *pointerName(param list);就成了函数原型,它表明函数的返回值类型为returnType *

【实例】用指针来实现对函数的调用。

#include 
//返回两个数中较大的一个
int max(int a, int b)
{
    return a>b ? a : b;
}
int main()
{
    int x, y, maxval;
    //定义函数指针
    int (*pmax)(int, int) = max;  //也可以写作int (*pmax)(int a, int b)
    printf("Input two numbers:");
    scanf("%d %d", &x, &y);
    maxval = (*pmax)(x, y);
    printf("Max value: %d\n", maxval);
    return 0;
}

运行结果:

Input two numbers:10 50↙
Max value: 50

第 14 行代码对函数进行了调用。pmax 是一个函数指针,在前面加 * 就表示对它指向的函数进行调用。注意( )的优先级高于*,第一个括号不能省略。

对C语言指针的总结

指针(Pointer)就是内存的地址,C语言允许用一个变量来存放指针,这种变量称为指针变量。指针变量可以存放基本类型数据的地址,也可以存放数组、函数以及其他指针变量的地址。

程序在运行过程中需要的是数据和指令的地址,变量名、函数名、字符串名和数组名在本质上是一样的,它们都是地址的助记符:在编写代码的过程中,我们认为变量名表示的是数据本身,而函数名、字符串名和数组名表示的是代码块或数据块的首地址;程序被编译和链接后,这些名字都会消失,取而代之的是它们对应的地址。

常见指针变量的定义
定  义 含  义
int *p; p 可以指向 int 类型的数据,也可以指向类似 int arr[n] 的数组。
int **p; p 为二级指针,指向 int * 类型的数据。
int *p[n]; p 为指针数组。[ ] 的优先级高于 *,所以应该理解为 int *(p[n]);
int (*p)[n]; p 为二维指针指针。
int *p(); p 是一个函数,它的返回值类型为 int *。
int (*p)(); p 是一个函数指针,指向原型为 int func() 的函数。
  1. 指针变量可以进行加减运算,例如p++p+ip-=i。指针变量的加减运算并不是简单的加上或减去一个整数,而是跟指针指向的数据类型有关。
  2. 给指针变量赋值时,要将一份数据的地址赋给它,不能直接赋给一个整数,例如int *p = 1000;是没有意义的,使用过程中一般会导致程序崩溃。
  3. 使用指针变量之前一定要初始化,否则就不能确定指针指向哪里,如果它指向的内存没有使用权限,程序就崩溃了。对于暂时没有指向的指针,建议赋值NULL
  4. 两个指针变量可以相减。如果两个指针变量指向同一个数组中的某个元素,那么相减的结果就是两个指针之间相差的元素个数。
  5. 数组也是有类型的,数组名的本意是表示一组类型相同的数据。在定义数组时,或者和 sizeof、& 运算符一起使用时数组名才表示整个数组,表达式中的数组名会被转换为一个指向数组的指针。

参考链接

1,C语言指针详解,30分钟玩转C语言指针  

你可能感兴趣的:(C语言,C语言,指针,数组指针,函数指针)