educoder python入门之基础语法-用python实现豆瓣短评通用爬虫(登录、爬取、可视化分析)...

原创技术公众号:bigsai

前言

在本人上的一门课中,老师对每个小组有个任务要求,介绍和完成一个小模块、工具知识的使用。然而我所在的组刚好遇到的是python爬虫的小课题。

心想这不是很简单嘛,搞啥呢?想着去搞新的时间精力可能不太够,索性自己就把豆瓣电影的评论(短评)搞一搞吧。

之前有写过哪吒那篇类似的,但今天这篇要写的像姨母般详细。本篇主要实现的是对任意一部电影短评(热门)的抓取以及可视化分析。 也就是你只要提供链接和一些基本信息,他就可以

分析

对于豆瓣爬虫,what shold we 考虑?怎么分析呢?豆瓣电影首页

这个首先的话尝试就可以啦,打开任意一部电影,这里以姜子牙为例。打开姜子牙你就会发现它是非动态渲染的页面,也就是传统的渲染方式,直接请求这个url即可获取数据。但是翻着翻着页面你就会发现:未登录用户只能访问优先的界面,登录的用户才能有权限去访问后面的页面。

所以这个流程应该是 登录——> 爬虫——>存储——>可视化分析。

这里提一下环境和所需要的安装装,环境为python3,代码在win和linux可成功跑,如果mac和linux不能跑友字体乱码问题还请私我。其中pip用到包如下,直接用清华 镜像下载不然很慢很慢(够贴心不)。pip install requests -i https://pypi.tuna.tsinghua.edu.cn/simple

pip install matplotlib -i https://pypi.tuna.tsinghua.edu.cn/simple

pip install numpy -i https://pypi.tuna.tsinghua.edu.cn/simple

pip install xlrd -i https://pypi.tuna.tsinghua.edu.cn/simple

pip install xlwt -i https://pypi.tuna.tsinghua.edu.cn/simple

pip install bs4 -i https://pypi.tuna.tsinghua.edu.cn/simple

pip install lxml -i https://pypi.tuna.tsinghua.edu.cn/simple

pip install wordcloud -i https://pypi.tuna.tsinghua.edu.cn/simple

pip install jieba -i https://pypi.tuna.tsinghua.edu.cn/simple

登录

进去后有个密码登录栏,我们要分析在登录的途中发生了啥,打开F12控制台是不够的,我们还要使用Fidder抓包。

打开F12控制台然后点击登录,多次试探之后发现登录接口也很简单:

查看请求的参数发现就是普通请求,无加密,当然这里可以用fidder进行抓包,这里我简单测试了一下用错误密码进行测试。如果失败的小伙伴可以尝试手动登陆再退出这样再跑程序。

这样编写登录模块的代码:url='https://accounts.douban.com/j/mobile/login/basic'

header={'user-agent':'Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/73.0.3683.86 Safari/537.36',

'Referer': 'https://accounts.douban.com/passport/login_popup?login_source=anony',

'Origin': 'https://accounts.douban.com',

'content-Type':'application/x-www-form-urlencoded',

'x-requested-with':'XMLHttpRequest',

'accept':'application/json',

'accept-encoding':'gzip, deflate, br',

'accept-language':'zh-CN,zh;q=0.9',

'connection': 'keep-alive'

,'Host': 'accounts.douban.com'

}

data={

'ck':'',

'name':'',

'password':'',

'remember':'false',

'ticket':''

}

def login(username,password):

global data

data['name']=username

data['password']=password

data=urllib.parse.urlencode(data)

print(data)

req=requests.post(url,headers=header,data=data,verify=False)

cookies = requests.utils.dict_from_cookiejar(req.cookies)

print(cookies)

return cookies

这块高清之后,整个执行流程大概为:

爬取

成功登录之后,我们就可以携带登录的信息访问网站为所欲为的爬取信息了。虽然它是传统交互方式,但是每当你切换页面时候会发现有个ajax请求。

这部分接口我们可以直接拿到评论部分的数据,就不需要请求整个页面然后提取这部分的内容了。而这部分的url规律和之前分析的也是一样,只有一个start表示当前的条数在变化,所以直接拼凑url就行。

也就是用逻辑拼凑url一直到不能正确操作为止。https://movie.douban.com/subject/25907124/comments?percent_type=&start=0&其他参数省略

https://movie.douban.com/subject/25907124/comments?percent_type=&start=20&其他参数省略

https://movie.douban.com/subject/25907124/comments?percent_type=&start=40&其他参数省略

对于每个url访问之后如何提取信息呢?

我们根据css选择器进行筛选数据,因为每个评论他们的样式相同,在html中就很像一个列表中的元素一样。

再观察我们刚刚那个ajax接口返回的数据刚好是下面红色区域块,所以我们直接根据class搜素分成若干小组进行曹祖就可以。

在具体的实现上,我们使用requests发送请求获取结果,使用BeautifulSoup去解析html格式文件。

而我们所需要的数据也很容易分析对应部分。

实现的代码为:import requests

from bs4 import BeautifulSoup

url='https://movie.douban.com/subject/25907124/comments?percent_type=&start=0&limit=20&status=P&sort=new_score&comments_only=1&ck=C7di'

header = {

'user-agent': 'Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/73.0.3683.86 Safari/537.36',

}

req = requests.get(url,headers=header,verify=False)

res = req.json() # 返回的结果是一个json

res = res['html']

soup = BeautifulSoup(res, 'lxml')

node = soup.select('.comment-item')

for va in node:

name = va.a.get('title')

star = va.select_one('.comment-info').select('span')[1].get('class')[0][-2]

comment = va.select_one('.short').text

votes=va.select_one('.votes').text

print(name, star,votes, comment)

这个测试的执行结果为:

储存

数据爬取完就要考虑存储,我们将数据储存到cvs中。

使用xlwt将数据写入excel文件中,xlwt基本应用实例:import xlwt

#创建可写的workbook对象

workbook = xlwt.Workbook(encoding='utf-8')

#创建工作表sheet

worksheet = workbook.add_sheet('sheet1')

#往表中写内容,第一个参数 行,第二个参数列,第三个参数内容

worksheet.write(0, 0, 'bigsai')

#保存表为test.xlsx

workbook.save('test.xlsx')

使用xlrd读取excel文件中,本案例xlrd基本应用实例:import xlrd

#读取名称为test.xls文件

workbook = xlrd.open_workbook('test.xls')

# 获取第一张表

table = workbook.sheets()[0] # 打开第1张表

# 每一行是个元组

nrows = table.nrows

for i in range(nrows):

print(table.row_values(i))#输出每一行

到这里,我们对登录模块+爬取模块+存储模块就可把数据存到本地了,具体整合的代码为:import requests

from bs4 import BeautifulSoup

import urllib.parse

import xlwt

import xlrd

# 账号密码

def login(username, password):

url = 'https://accounts.douban.com/j/mobile/login/basic'

header = {

'user-agent': 'Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/73.0.3683.86 Safari/537.36',

'Referer': 'https://accounts.douban.com/passport/login_popup?login_source=anony',

'Origin': 'https://accounts.douban.com',

'content-Type': 'application/x-www-form-urlencoded',

'x-requested-with': 'XMLHttpRequest',

'accept': 'application/json',

'accept-encoding': 'gzip, deflate, br',

'accept-language': 'zh-CN,zh;q=0.9',

'connection': 'keep-alive'

, 'Host': 'accounts.douban.com'

}

# 登陆需要携带的参数

data = {

'ck' : '',

'name': '',

'password': '',

'remember': 'false',

'ticket': ''

}

data['name'] = username

data['password'] = password

data = urllib.parse.urlencode(data)

print(data)

req = requests.post(url, headers=header, data=data, verify=False)

cookies = requests.utils.dict_from_cookiejar(req.cookies)

print(cookies)

return cookies

def getcomment(cookies, mvid): # 参数为登录成功的cookies(后台可通过cookies识别用户,电影的id)

start = 0

w = xlwt.Workbook(encoding='ascii') # #创建可写的workbook对象

ws = w.add_sheet('sheet1') # 创建工作表sheet

index = 1 # 表示行的意思,在xls文件中写入对应的行数

while True:

# 模拟浏览器头发送请求

header = {

'user-agent': 'Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/73.0.3683.86 Safari/537.36',

}

# try catch 尝试,一旦有错误说明执行完成,没错误继续进行

try:

# 拼凑url 每次star加20

url = 'https://movie.douban.com/subject/' + str(mvid) + '/comments?start=' + str(

start) + '&limit=20&sort=new_score&status=P&comments_only=1'

start += 20

# 发送请求

req = requests.get(url, cookies=cookies, headers=header)

# 返回的结果是个json字符串 通过req.json()方法获取数据

res = req.json()

res = res['html'] # 需要的数据在`html`键下

soup = BeautifulSoup(res, 'lxml') # 把这个结构化html创建一个BeautifulSoup对象用来提取信息

node = soup.select('.comment-item') # 每组class 均为comment-item 这样分成20条记录(每个url有20个评论)

for va in node: # 遍历评论

name = va.a.get('title') # 获取评论者名称

star = va.select_one('.comment-info').select('span')[1].get('class')[0][-2] # 星数好评

votes = va.select_one('.votes').text # 投票数

comment = va.select_one('.short').text # 评论文本

print(name, star, votes, comment)

ws.write(index, 0, index) # 第index行,第0列写入 index

ws.write(index, 1, name) # 第index行,第1列写入 评论者

ws.write(index, 2, star) # 第index行,第2列写入 评星

ws.write(index, 3, votes) # 第index行,第3列写入 投票数

ws.write(index, 4, comment) # 第index行,第4列写入 评论内容

index += 1

except Exception as e: # 有异常退出

print(e)

break

w.save('test.xls') # 保存为test.xls文件

if __name__ == '__main__':

username = input('输入账号:')

password = input('输入密码:')

cookies = login(username, password)

mvid = input('电影的id为:')

getcomment(cookies, mvid)

执行之后成功存储数据:

可视化分析

我们要对评分进行统计、词频统计。还有就是生成词云展示。而对应的就是matplotlib、WordCloud库。

实现的逻辑思路:读取xls的文件,将评论使用分词处理统计词频,统计出现最多的词语制作成直方图和词语。将评星?数量做成饼图展示一下,主要代码均有注释,具体的代码为:

其中代码为:import matplotlib.pyplot as plt

import matplotlib

import jieba

import jieba.analyse

import xlwt

import xlrd

from wordcloud import WordCloud

import numpy as np

from collections import Counter

# 设置字体 有的linux字体有问题

matplotlib.rcParams['font.sans-serif'] = ['SimHei']

matplotlib.rcParams['axes.unicode_minus'] = False

# 类似comment 为评论的一些数据 [ ['1','名称','star星','赞同数','评论内容'] ,['2','名称','star星','赞同数','评论内容'] ]元组

def anylasescore(comment):

score = [0, 0, 0, 0, 0, 0] # 分别对应0 1 2 3 4 5分出现的次数

count = 0 # 评分总次数

for va in comment: # 遍历每条评论的数据 ['1','名称','star星','赞同数','评论内容']

try:

score[int(va[2])] += 1 # 第3列 为star星 要强制转换成int格式

count += 1

except Exception as e:

continue

print(score)

label = '1分', '2分', '3分', '4分', '5分'

color = 'blue', 'orange', 'yellow', 'green', 'red' # 各类别颜色

size = [0, 0, 0, 0, 0] # 一个百分比数字 合起来为100

explode = [0, 0, 0, 0, 0] # explode :(每一块)离开中心距离;

for i in range(1, 5): # 计算

size[i] = score[i] * 100 / count

explode[i] = score[i] / count / 10

pie = plt.pie(size, colors=color, explode=explode, labels=label, shadow=True, autopct='%1.1f%%')

for font in pie[1]:

font.set_size(8)

for digit in pie[2]:

digit.set_size(8)

plt.axis('equal') # 该行代码使饼图长宽相等

plt.title(u'各个评分占比', fontsize=12) # 标题

plt.legend(loc=0, bbox_to_anchor=(0.82, 1)) # 图例

# 设置legend的字体大小

leg = plt.gca().get_legend()

ltext = leg.get_texts()

plt.setp(ltext, fontsize=6)

plt.savefig("score.png")

# 显示图

plt.show()

def getzhifang(map): # 直方图二维,需要x和y两个坐标

x = []

y = []

for k, v in map.most_common(15): # 获取前15个最大数值

x.append(k)

y.append(v)

Xi = np.array(x) # 转成numpy的坐标

Yi = np.array(y)

width = 0.6

plt.rcParams['font.sans-serif'] = ['SimHei'] # 用来正常显示中文标签

plt.figure(figsize=(8, 6)) # 指定图像比例: 8:6

plt.bar(Xi, Yi, width, color='blue', label='热门词频统计', alpha=0.8, )

plt.xlabel("词频")

plt.ylabel("次数")

plt.savefig('zhifang.png')

plt.show()

return

def getciyun_most(map): # 获取词云

# 一个存对应中文单词,一个存对应次数

x = []

y = []

for k, v in map.most_common(300): # 在前300个常用词语中

x.append(k)

y.append(v)

xi = x[0:150] # 截取前150个

xi = ' '.join(xi) # 以空格 ` `将其分割为固定格式(词云需要)

print(xi)

# backgroud_Image = plt.imread('') # 如果需要个性化词云

# 词云大小,字体等基本设置

wc = WordCloud(background_color="white",

width=1500, height=1200,

# min_font_size=40,

# mask=backgroud_Image,

font_path="simhei.ttf",

max_font_size=150, # 设置字体最大值

random_state=50, # 设置有多少种随机生成状态,即有多少种配色方案

) # 字体这里有个坑,一定要设这个参数。否则会显示一堆小方框wc.font_path="simhei.ttf" # 黑体

# wc.font_path="simhei.ttf"

my_wordcloud = wc.generate(xi) #需要放入词云的单词 ,这里前150个单词

plt.imshow(my_wordcloud) # 展示

my_wordcloud.to_file("img.jpg") # 保存

xi = ' '.join(x[150:300]) # 再次获取后150个单词再保存一张词云

my_wordcloud = wc.generate(xi)

my_wordcloud.to_file("img2.jpg")

plt.axis("off")

def anylaseword(comment):

# 这个过滤词,有些词语没意义需要过滤掉

list = ['这个', '一个', '不少', '起来', '没有', '就是', '不是', '那个', '还是', '剧情', '这样', '那样', '这种', '那种', '故事', '人物', '什么']

print(list)

commnetstr = '' # 评论的字符串

c = Counter() # python一种数据集合,用来存储字典

index = 0

for va in comment:

seg_list = jieba.cut(va[4], cut_all=False) ## jieba分词

index += 1

for x in seg_list:

if len(x) > 1 and x != ' ': # 不是单个字 并且不是特殊符号

try:

c[x] += 1 # 这个单词的次数加一

except:

continue

commnetstr += va[4]

for (k, v) in c.most_common(): # 过滤掉次数小于5的单词

if v < 5 or k in list:

c.pop(k)

continue

# print(k,v)

print(len(c), c)

getzhifang(c) # 用这个数据进行画直方图

getciyun_most(c) # 词云

# print(commnetstr)

def anylase():

data = xlrd.open_workbook('test.xls') # 打开xls文件

table = data.sheets()[0] # 打开第i张表

nrows = table.nrows # 若干列的一个集合

comment = []

for i in range(nrows):

comment.append(table.row_values(i)) # 将该列数据添加到元组中

# print(comment)

anylasescore(comment)

anylaseword(comment)

if __name__ == '__main__':

anylase()

我们再来查看一下执行的效果:

这里我选了姜子牙和千与千寻 电影的一些数据,两个电影评分比例对比为:

从评分可以看出明显千与千寻好评度更高,大部分人愿意给他五分。基本算是最好看的动漫之一了,再来看看直方图的词谱:

很明显千与千寻的作者更出名,并且有很大的影响力,以至于大家纷纷提起他。再看看两者词云图:

宫崎骏、白龙、婆婆,真的是满满的回忆,好了不说了,有啥想说的欢迎讨论!

如果感觉不错, 原创公众号:bigsai,分享知识和干货!

你可能感兴趣的:(educoder python入门之基础语法-用python实现豆瓣短评通用爬虫(登录、爬取、可视化分析)...)