电机异响AI智能诊断数据集(1000个故障电机数据,两组8w维特征)

电机异响AI智能诊断数据集(1000个故障电机数据,两组8w维特征)_第1张图片

在电机生产线上普遍采用人工听音的方法分辨良、次品,不仅成本高,而且重复、单调的听音工作极易引起人员疲劳,容易出现误判,若个别不良品混入整批成品中,会给工厂带来严重经济损失,甚至严重影响产品声誉。本次大赛要求参赛者基于加速度传感器采集的振动信号,利用机器学习、深度学习等人工智能技术,设计智能检验的算法,要求算法对故障电机不能有漏识别,在召回100%的情况下,尽量提高预测准确率,以达到替代人工质检的目的。文件清单:1、Motor_tain.zip:用于训练的采集数据,其中,文件夹“正样本”包含30个异常电机的数据样本,文件夹“负样本”包含500个正常电机的数据样本;2、Motor_testP.zip:用于测试的采集数据,包含500个电机的数据样本; 文件说明:采集数据时是分别对电机正转、反转时的振动信号进行采集。也就是说每台电机有两条数据,其中F代表正转,B代表反转。每条数据包含两路振动信号,数据文件命名规则:编号_旋转方向.csv。

下载链接:电机异响智能诊断文本数据集(1000个电机数据)

你可能感兴趣的:(机器学习)