路径规划与轨迹优化 —— A*算法

一、A*算法的思路

前面提到的Dijkstra算法是一种广度优先搜索算法,它以广度作为优先级,这种特性决定了它在搜索到终点前会尽可能大范围的遍历所有节点。我们运行前文的代码,可以看到广度优先搜索的效果有点像“病毒扩散”。

路径规划与轨迹优化 —— A*算法_第1张图片

但在实际工程应用中,我们希望减少对节点的收录,并使机器人可以尽快的找到搜索方向。我们的思路是加入一个启发式函数来引导路径的规划。

f ( n ) = g ( n ) + h ( n ) f(n) = g(n) + h(n) f(n)=g(n)+h(n)
其中

  • f(n)是节点n的综合优先级。当我们选择下一个要遍历的节点时,我们总会选取综合优先级最高(值最小)的节点。
  • g(n) 是节点n距离起点的代价。
  • h(n) 是节点n距离终点的代价,这也就是A*算法的启发函数。

加入启发式函数,可以形象的理解为终点的位置对规划产生了一个"引力",促使着收录节点时更快的向终点进发。所以起点和终点都在影响着A*算法的行为

  • 当启发函数h(n)始终为0,则将由g(n)决定节点的优先级,此时算法就变成了Dijkstra算法。
  • 如果h(n)始终小于等于节点n到终点的代价,则A*算法保证一定能够找到最短路径。但是当h(n)的值越小,算法将遍历越多的节点,也就导致算法越慢。
  • 如果h(n)完全等于节点n到终点的代价,则A*算法将找到最佳路径,并且速度很快。可惜的是,并非所有场景下都能做到这一点。因为在没有达到终点之前,我们很难确切算出距离终点还有多远。
  • 如果h(n)的值比节点n到终点的代价要大,则A*算法不能保证找到最短路径,不过此时会很快。

所以A*算法能找到最短路径,依然保证最优性的条件是

h ( n ) ≤ h ( n ) 真 实 距 离 h(n) \leq h(n)_{真实距离} h(n)h(n)

A*算法在算法流程上只比Dijkstra算法多加入了启发式函数,其余没有变化

路径规划与轨迹优化 —— A*算法_第2张图片

二、 地图距离

补充一些关于地图距离的知识点。不同的地图影响着启发式函数的值。

曼哈顿距离

如果机器人的行走规则中只允许朝上下左右四个方向移动,则使用曼哈顿距离来衡量两个点之间的距离。

def heuristic(node):
    dx = abs(node.x - goal.x)
    dy = abs(node.y - goal.y)
    return D * (dx + dy)  #D是代价

路径规划与轨迹优化 —— A*算法_第3张图片
对角距离

如果机器人可以斜向行走,则使用对角距离。计算对角距离的函数如下

def heuristic(node):
    dx = abs(node.x - goal.x)
    dy = abs(node.y - goal.y)
    return D * (dx + dy) + (D2 - 2 * D) * min(dx, dy)

其中D2是斜向行走的代价,它的计算如下

D 2 = 2 D D2 = \sqrt 2 D D2=2 D
路径规划与轨迹优化 —— A*算法_第4张图片
欧式距离

欧几里得距离是指两个节点之间的直线距离。计算函数如下

def heuristic(node):
    dx = abs(node.x - goal.x)
    dy = abs(node.y - goal.y)
    return D * sqrt(dx * dx + dy * dy)

三、代码

定义机器人的运动规则有上下左右和斜向方式

    def get_motion_model():    #相当于赋予权重
        # dx, dy, cost(x轴方向,y轴方向,代价(距离))
        motion = [[1, 0, 1],
                  [0, 1, 1],
                  [-1, 0, 1],
                  [0, -1, 1],
                  [-1, -1, math.sqrt(2)],
                  [-1, 1, math.sqrt(2)],
                  [1, -1, math.sqrt(2)],
                  [1, 1, math.sqrt(2)]]

        return motion

因此启发式函数的计算采用对角距离

    #启发式函数的计算采用对角距离
    def calc_heuristic(self,goal_node,current_node):
        D = 1
        D2 = math.sqrt(2) * 1
        dx = abs(goal_node.x - current_node.x)
        dy = abs(goal_node.y - current_node.y)
        return D * (dx + dy) + (D2 - 2 * D) * min(dx, dy)

完整代码如下:

import matplotlib.pyplot as plt
import math

show_animation = True


class Dijkstra:

    def __init__(self, ox, oy, resolution, robot_radius):
        """
        Initialize map for planning

        ox: x position list of Obstacles [m]
        oy: y position list of Obstacles [m]
        resolution: grid resolution [m]
        rr: robot radius[m]
        """

        self.min_x = None
        self.min_y = None
        self.max_x = None
        self.max_y = None
        self.x_width = None
        self.y_width = None
        self.obstacle_map = None

        self.resolution = resolution
        self.robot_radius = robot_radius
        self.calc_obstacle_map(ox, oy)         #构建栅格地图(包含障碍物的膨胀)
        self.motion = self.get_motion_model()  #规定路径权重

    class Node:
        def __init__(self, x, y, cost, parent_index):
            self.x = x  # index of grid
            self.y = y  # index of grid
            self.cost = cost  # g(n)
            self.parent_index = parent_index  # index of previous Node 前一个结点

        def __str__(self):
            return str(self.x) + "," + str(self.y) + "," + str(
                self.cost) + "," + str(self.parent_index)

    def planning(self, sx, sy, gx, gy):
        """
        dijkstra path search

        input:
            s_x: start x position [m]
            s_y: start y position [m]
            gx: goal x position [m]
            gx: goal x position [m]

        output:
            rx: x position list of the final path
            ry: y position list of the final path
        """
        
        #原始坐标转换成栅格坐标并赋给节点
        start_node = self.Node(self.calc_xy_index(sx, self.min_x),
                               self.calc_xy_index(sy, self.min_y), 0.0, -1)   # round((position - minp) / self.resolution)
        goal_node = self.Node(self.calc_xy_index(gx, self.min_x),
                              self.calc_xy_index(gy, self.min_y), 0.0, -1)

        open_set, closed_set = dict(), dict()     # key - value: hash表

        #calc_index是对节点的一个遍历标号 方便对节点的操作和定位  相当于key
        open_set[self.calc_index(start_node)] = start_node   #起点先加入open_set

        while 1:
            #c_id取的是最小代价点的key
            c_id = min(open_set, key=lambda o: (open_set[o].cost + self.calc_heuristic(goal_node,open_set[o])))  # 取cost最小的节点
            #当前节点
            current = open_set[c_id]

            # show graph
            if show_animation:  # pragma: no cover
                plt.plot(self.calc_position(current.x, self.min_x),
                         self.calc_position(current.y, self.min_y), "xc")
                # for stopping simulation with the esc key.
                plt.gcf().canvas.mpl_connect(
                    'key_release_event',
                    lambda event: [exit(0) if event.key == 'escape' else None])
                if len(closed_set.keys()) % 10 == 0:
                    plt.pause(0.001)

            # 判断是否是终点
            if current.x == goal_node.x and current.y == goal_node.y:
                print("Find goal")
                goal_node.parent_index = current.parent_index
                goal_node.cost = current.cost
                break

            # Remove the item from the open set
            del open_set[c_id]

            # Add it to the closed set
            closed_set[c_id] = current

            # expand search grid based on motion model
            for move_x, move_y, move_cost in self.motion:
                node = self.Node(current.x + move_x,
                                 current.y + move_y,
                                 current.cost + move_cost, c_id)  #c_id传入的是上一个被收录点的遍历索引
                n_id = self.calc_index(node)

                if n_id in closed_set:  #如果相邻点已经在closed_list 就不用收录了
                    continue

                if not self.verify_node(node):   #符合地图的约束
                    continue

                if n_id not in open_set:   #将新发现的节点收录
                    open_set[n_id] = node  # Discover a new node
                else:
                    if open_set[n_id].cost >= node.cost:          
                        # This path is the best until now. record it!
                        open_set[n_id] = node           #更新cost

        rx, ry = self.calc_final_path(goal_node, closed_set)

        return rx, ry

    def calc_final_path(self, goal_node, closed_set):
        # generate final course
        rx, ry = [self.calc_position(goal_node.x, self.min_x)], [
            self.calc_position(goal_node.y, self.min_y)]
        parent_index = goal_node.parent_index
        while parent_index != -1:
            n = closed_set[parent_index]
            rx.append(self.calc_position(n.x, self.min_x))
            ry.append(self.calc_position(n.y, self.min_y))
            parent_index = n.parent_index

        return rx, ry

    #机器人的行走规则
    def calc_heuristic(self,goal_node,current_node):
        D = 1
        D2 = math.sqrt(2) * 1
        dx = abs(goal_node.x - current_node.x)
        dy = abs(goal_node.y - current_node.y)
        return D * (dx + dy) + (D2 - 2 * D) * min(dx, dy)

    def calc_position(self, index, minp):
        pos = index * self.resolution + minp
        return pos

    def calc_xy_index(self, position, minp):
        return round((position - minp) / self.resolution)

    def calc_index(self, node):
        return node.y * self.x_width + node.x

    def verify_node(self, node):
        px = self.calc_position(node.x, self.min_x)
        py = self.calc_position(node.y, self.min_y)

        if px < self.min_x:
            return False
        if py < self.min_y:
            return False
        if px >= self.max_x:
            return False
        if py >= self.max_y:
            return False

        if self.obstacle_map[node.x][node.y]:
            return False

        return True

    def calc_obstacle_map(self, ox, oy):
        ''' 第1步:构建栅格地图 '''

        #四个顶点
        self.min_x = round(min(ox))
        self.min_y = round(min(oy))
        self.max_x = round(max(ox))
        self.max_y = round(max(oy))


        print("min_x:", self.min_x)
        print("min_y:", self.min_y)
        print("max_x:", self.max_x)
        print("max_y:", self.max_y)

        #栅格个数
        self.x_width = round((self.max_x - self.min_x) / self.resolution)
        self.y_width = round((self.max_y - self.min_y) / self.resolution)
        print("x_width:", self.x_width)
        print("y_width:", self.y_width)

        # obstacle map generation
        # 初始化地图
        self.obstacle_map = [[False for _ in range(self.y_width)]
                             for _ in range(self.x_width)]
        # 设置障碍物
        # x和y是栅格地图中的坐标  对障碍物做膨胀处理时要找到x和y在于原始地图的坐标
        for ix in range(self.x_width):
            x = self.calc_position(ix, self.min_x)
            for iy in range(self.y_width):
                y = self.calc_position(iy, self.min_y)
                for iox, ioy in zip(ox, oy):
                    d = math.hypot(iox - x, ioy - y)  #原始地图中所有栅格距离障碍物的距离
                    if d <= self.robot_radius:        #障碍物到附近点的距离小于机器人半径 机器人不能通过
                        self.obstacle_map[ix][iy] = True
                        break

    @staticmethod
    def get_motion_model():    #相当于赋予权重
        # dx, dy, cost(x轴方向,y轴方向,代价(距离))
        motion = [[1, 0, 1],
                  [0, 1, 1],
                  [-1, 0, 1],
                  [0, -1, 1],
                  [-1, -1, math.sqrt(2)],
                  [-1, 1, math.sqrt(2)],
                  [1, -1, math.sqrt(2)],
                  [1, 1, math.sqrt(2)]]

        return motion

def main():
    # start and goal position

    #起点
    sx = -5.0  # [m]
    sy = -5.0  # [m]

    #终点
    gx = 50.0  # [m]
    gy = 50.0  # [m]

    grid_size = 2.0  # [m]      #栅格大小
    robot_radius = 1.0  # [m]   #机器人半径

    # set obstacle positions
    ox, oy = [], []     #ox oy中存放的是障碍物在原始地图的坐标值

    #四周墙面
    for i in range(-10, 60):
        ox.append(i)
        oy.append(-10.0)
    for i in range(-10, 60):
        ox.append(60.0)
        oy.append(i)
    for i in range(-10, 61):
        ox.append(i)
        oy.append(60.0)
    for i in range(-10, 61):
        ox.append(-10.0)
        oy.append(i)

    #障碍物
    for i in range(-10, 40):
        ox.append(20.0)
        oy.append(i)
    for i in range(0, 40):
        ox.append(40.0)
        oy.append(60.0 - i)

    #对墙面和障碍物画图
    if show_animation:  # pragma: no cover
        plt.plot(ox, oy, ".k")
        plt.plot(sx, sy, "og")
        plt.plot(gx, gy, "xb")
        plt.grid(True)
        plt.axis("equal")

    #创建Dijkstra对象
    dijkstra = Dijkstra(ox, oy, grid_size, robot_radius)
    rx, ry = dijkstra.planning(sx, sy, gx, gy)

    if show_animation:  # pragma: no cover
        plt.plot(rx, ry, "-r")
        plt.pause(0.01)
        plt.show()

if __name__ == '__main__':
    main()

四、比较

我们将Dijkstra算法的运行结果和A* 算法的结果放在一起可以发现,Dijkstra找到的是最短距离,但收录了大量节点,搜索速度慢。而A* 算法收录节点少,搜索速度快,但并不是最短距离。

Dijkstra算法效果:

路径规划与轨迹优化 —— A*算法_第5张图片

A*算法效果:
路径规划与轨迹优化 —— A*算法_第6张图片

我们把障碍物去掉,单纯比较算法的搜索速度可以发现,A* 算法最快的找到了终点,而Dijkstra收录了大量的节点,速度明显不如A* 算法。

Dijkstra算法效果:

路径规划与轨迹优化 —— A*算法_第7张图片
A*算法效果:路径规划与轨迹优化 —— A*算法_第8张图片

你可能感兴趣的:(路径规划与轨迹优化,自动驾驶,图论,算法,动态规划)