python科学计算与可视化

一、Numpy 库

NumPy(Numerical Python) 是 Python 语言的一个扩展程序库,支持大量的维度数组与矩阵运算,此外也针对数组运算提供大量的数学函数库。

引用:

import numpy as np

Numpy查看数组属性:

数组元素个数:

b.size

数组形状:

b.shape

数组维度:

b.ndim

数组元素类型:

b.dtype

快速创建N维数组的api函数:

(1)创建10行10列的数值为浮点1的矩阵:

array_one = np.ones([10, 10]

(2)创建10行10列的数值为浮点0的矩阵:

array_zero = np.zeros([10, 10])

Numpy创建随机数组np.random

均匀分布

np.random.rand(10, 10)创建指定形状(示例为10行10列)的数组(范围在0至1之间)

np.random.uniform(0, 100)创建指定范围内的一个数

np.random.randint(0, 100)创建指定范围内的一个整数

正态分布

给定均值/标准差/维度的正态分布np.random.normal(1.75, 0.1, (2, 3)

NumPy 创建数组

ndarray 数组除了可以使用底层 ndarray 构造器来创建外,也可以通过以下几种方式来创建。

numpy.empty

numpy.empty 方法用来创建一个指定形状(shape)、数据类型(dtype)且未初始化的数组:

numpy.empty(shape,dtype=float,order='C')

参数说明:

numpy.zeros

创建指定大小的数组,数组元素以 0 来填充:

numpy.zeros(shape,dtype=float,order='C')

参数说明:

numpy.ones

创建指定形状的数组,数组元素以 1 来填充:

numpy.ones(shape,dtype=None,order='C')

NumPy 从已有的数组创建数组

numpy.asarray

numpy.asarray 类似 numpy.array,但 numpy.asarray 只有三个,比 numpy.array 少两个。

numpy.asarray(a,dtype=None,order=None)

参数说明:

numpy.frombuffer

numpy.frombuffer 用于实现动态数组。

numpy.frombuffer 接受 buffer 输入参数,以流的形式读入转化成 ndarray 对象。

numpy.frombuffer(buffer,dtype=float,count=-1,offset=0)

注意:buffer 是字符串的时候,Python3 默认 str 是 Unicode 类型,所以要转成 bytestring 在原 str 前加上 b。

参数说明:参数描述buffer可以是任意对象,会以流的形式读入。dtype返回数组的数据类型,可选count读取的数据数量,默认为-1,读取所有数据。offset读取的起始位置,默认为0。

numpy.fromiter

numpy.fromiter 方法从可迭代对象中建立 ndarray 对象,返回一维数组。

numpy.fromiter(iterable,dtype,count=-1

参数描述iterable可迭代对象dtype返回数组的数据类型count读取的数据数量,默认为-1,读取所有数据

二、matplotlib库

matplotlib是python上的一个2D绘图库,它可以在夸平台上边出很多高质量的图像。综旨就是让简单的事变得更简单,让复杂的事变得可能。我们可以用matplotlib生成 绘图、直方图、功率谱、柱状图、误差图、散点图等 。

引用:

importmatplotlib.pyplot as plt

散点图

plt.scatter(X, Y, s=75, c=T, alpha=.5)

其中X,Y分别为横纵坐标;s为点的大小(optional);c为颜色设置(optional);alpha为透明度设置(optional),是一个小于等于1的值

柱状图

等高图:

 matplotlib绘制3D图:

你可能感兴趣的:(Python,python)