【keras入门】使用 keras 训练 MNIST 数据集

文章目录

    • 一、代码
    • 二、模型结构
    • 三、全连接层参数量计算
    • 四、训练和测试结果

一、代码

以下代码提供了四种创建model的方式:其中包含两张使用 Sequential() 的方法,一种使用 keras API的方法,以及一种将 model 定义为 keras.Model 的子类的方法。

import tensorflow as tf
import tensorflow.keras as keras


def load_dataset():
    (x_train, y_train), (x_valid, y_valid) = keras.datasets.mnist.load_data()
    class_num = 10
    assert x_train.shape == (60000, 28, 28)
    assert x_valid.shape == (10000, 28, 28)
    assert y_train.shape == (60000,)    # 这里写成 (60000, 1)会报错
    assert y_valid.shape == (10000,)

    # 将数据归一化到0-1之间的浮点数
    # y=tf.cast(x,dtype) 表示将x的数据类型转为 dtype类型,返回 y
    x_train = tf.cast(x_train / 255, tf.float32)
    x_valid = tf.cast(x_valid / 255, tf.float32)
    y_train = tf.cast(y_train, tf.int64)
    y_valid = tf.cast(y_valid, tf.int64)

    return x_train, x_valid, y_train, y_valid, class_num


def bulid_model(x_train, class_num):
    # 第一种创建模型的方法
    model1 = keras.models.Sequential([
        keras.layers.Flatten(input_shape=(x_train.shape[1], x_train.shape[2])),  # input_shape=(28,28)
        keras.layers.Dense(units=512, activation=tf.nn.relu),
        keras.layers.Dropout(0.2),
        keras.layers.Dense(class_num, activation=tf.nn.softmax)
    ])

    # 第二种创建模型的方法
    model2 = keras.models.Sequential()
    model2.add(keras.layers.Flatten(input_shape=(x_train.shape[1], x_train.shape[2])))
    model2.add(keras.layers.Dense(units=512, activation=tf.nn.relu))
    model2.add(keras.layers.Dropout(0.2))
    model2.add(keras.layers.Dense(class_num, activation=tf.nn.softmax))

    # 第三种创建模型的方法
    input = keras.Input(shape=(x_train.shape[1], x_train.shape[2]))
    x = keras.layers.Flatten()(input)
    x = keras.layers.Dense(units=512, activation=tf.nn.relu)(x)
    x = keras.layers.Dropout(0.2)(x)
    output = keras.layers.Dense(units=class_num, activation=tf.nn.softmax)(x)
    model3 = keras.Model(inputs=input, outputs=output)

    # 第四种创建模型的方法
    class MnistModel(tf.keras.Model):
        def __init__(self, num_classes=10):
            super(MnistModel, self).__init__()
            self.x0 = tf.keras.layers.Flatten()
            self.x1 = tf.keras.layers.Dense(units=512, activation=tf.nn.relu)
            self.x2 = tf.keras.layers.Dropout(0.2)
            self.predictions = tf.keras.layers.Dense(units=10, activation=tf.nn.softmax)

        def call(self, input):
            x = self.x0(input)
            x = self.x1(x)
            x = self.x2(x)
            return self.predictions(x)
    model4 = MnistModel()

    return model1, model2, model3, model4


def train(x_train, x_valid, y_train, y_valid, batch_size, epochs, model):
    # 编译模型
    # 采用 sparse_categorical_crossentropy 而不是 categorical_crossentropy 损失函数,可以直接传入int类型的label,而不需要one-hot类型
    optimiser = keras.optimizers.Adam()
    model.compile(optimizer=optimiser, loss='sparse_categorical_crossentropy', metrics=['accuracy'])

    # 打印模型结构
    # model.summary()必须要在模型编译之后才能执行,否则会报错 ”This model has not yet been built“
    # 使用 model4时 model.summary() 只能在模型训练之后打印模型结构,不知道为什么。
    print("model:")
    model.summary()

    # train
    print("train:")
    model.fit(x_train, y_train, batch_size=batch_size, epochs=epochs)

    # valid
    print("valid:")
    model.evaluate(x_valid, y_valid)


def main(epochs, batch_size):
    x_train, x_valid, y_train, y_valid, class_num = load_dataset()
    model1, model2, model3, model4 = bulid_model(x_train, class_num)
    # 这里修改使用的model类型
    train(x_train, x_valid, y_train, y_valid, batch_size, epochs, model=model1)


if __name__ == '__main__':
    epochs = 5
    batch_size = 64
    main(epochs, batch_size)

MnistModel 子类是在 bulid_model 函数中定义的,因此可以发现 python 可以在函数中定义和使用类。

二、模型结构

model1.summary()打印出的模型结构为:

Model: "sequential"
_________________________________________________________________
Layer (type)                 Output Shape              Param #   
=================================================================
flatten (Flatten)            (None, 784)               0         
_________________________________________________________________
dense (Dense)                (None, 512)               401920    
_________________________________________________________________
dropout (Dropout)            (None, 512)               0         
_________________________________________________________________
dense_1 (Dense)              (None, 10)                5130      
=================================================================
Total params: 407,050
Trainable params: 407,050
Non-trainable params: 0
 _________________________________________________________________

三、全连接层参数量计算

该模型没有卷积层,只有两个全连接层。全连接层示意图如下:

【keras入门】使用 keras 训练 MNIST 数据集_第1张图片

        
全连接层每两个神经元之间的连线都有一个权重w,但只有神经元本身才有偏置b

【keras入门】使用 keras 训练 MNIST 数据集_第2张图片

        

因此 flatten层和 dense层之间的权重数量为 784 * 512,dense层的偏置数量为512。则dense的参数量为 784*512+512=401920

同理,dense_1的参数量为 512 * 10+10=5130

四、训练和测试结果

train:
Epoch 1/5
938/938 [==============================] - 2s 2ms/step - loss: 0.2430 - accuracy: 0.9297
Epoch 2/5
938/938 [==============================] - 1s 2ms/step - loss: 0.1035 - accuracy: 0.9686
Epoch 3/5
938/938 [==============================] - 1s 1ms/step - loss: 0.0730 - accuracy: 0.9777
Epoch 4/5
938/938 [==============================] - 1s 2ms/step - loss: 0.0557 - accuracy: 0.9827
Epoch 5/5
938/938 [==============================] - 1s 1ms/step - loss: 0.0437 - accuracy: 0.9862

valid:
313/313 [==============================] - 0s 325us/step - loss: 0.0597 - accuracy: 0.9809

最终准确率为 98.09%

你可能感兴趣的:(TensorFlow,keras,tensorflow,深度学习)