pip install labelme=3.3.1
conda install pyqt
数据结构
----my_data
--------annotations 存放标注文件
--------train 存放训练集图片
--------val 存放测试集图片
使用labelme标注数据
通过labelme2coco.py 将标注好的多个json文件转换为一个json文件. 训练集和测试集的标注文件都转换一下
将转换后的train.json文件和test.json文件放入annotations文件夹下
#labeelme2coco.py 代码
# -*- coding:utf-8 -*-
import json
from labelme import utils
import numpy as np
import glob
import PIL.Image
class MyEncoder(json.JSONEncoder):
def default(self, obj):
if isinstance(obj, np.integer):
return int(obj)
elif isinstance(obj, np.floating):
return float(obj)
elif isinstance(obj, np.ndarray):
return obj.tolist()
else:
return super(MyEncoder, self).default(obj)
class labelme2coco(object):
def __init__(self, labelme_json=[], save_json_path='./train.json'):
'''
:param labelme_json: 所有labelme的json文件路径组成的列表
:param save_json_path: json保存位置
'''
self.labelme_json = labelme_json
self.save_json_path = save_json_path
self.images = []
self.categories = []
self.annotations = []
# self.data_coco = {}
self.label = []
self.annID = 1
self.height = 0
self.width = 0
self.save_json()
def data_transfer(self):
for num, json_file in enumerate(self.labelme_json):
with open(json_file, 'r') as fp:
data = json.load(fp) # 加载json文件
self.images.append(self.image(data, num))
for shapes in data['shapes']:
label = shapes['label']
if label not in self.label:
self.categories.append(self.categorie(label))
self.label.append(label)
points = shapes['points'] # 这里的point是用rectangle标注得到的,只有两个点,需要转成四个点
points.append([points[0][0], points[1][1]])
points.append([points[1][0], points[0][1]])
self.annotations.append(self.annotation(points, label, num))
self.annID += 1
def image(self, data, num):
image = {}
img = utils.img_b64_to_arr(data['imageData']) # 解析原图片数据
# img=io.imread(data['imagePath']) # 通过图片路径打开图片
# img = cv2.imread(data['imagePath'], 0)
height, width = img.shape[:2]
img = None
image['height'] = height
image['width'] = width
image['id'] = num + 1
image['file_name'] = data['imagePath'].split('/')[-1]
self.height = height
self.width = width
return image
def categorie(self, label):
categorie = {}
categorie['supercategory'] = 'Cancer'
categorie['id'] = len(self.label) + 1 # 0 默认为背景
categorie['name'] = label
return categorie
def annotation(self, points, label, num):
annotation = {}
annotation['segmentation'] = [list(np.asarray(points).flatten())]
annotation['iscrowd'] = 0
annotation['image_id'] = num + 1
# annotation['bbox'] = str(self.getbbox(points)) # 使用list保存json文件时报错(不知道为什么)
# list(map(int,a[1:-1].split(','))) a=annotation['bbox'] 使用该方式转成list
annotation['bbox'] = list(map(float, self.getbbox(points)))
annotation['area'] = annotation['bbox'][2] * annotation['bbox'][3]
# annotation['category_id'] = self.getcatid(label)
annotation['category_id'] = self.getcatid(label) # 注意,源代码默认为1
annotation['id'] = self.annID
return annotation
def getcatid(self, label):
for categorie in self.categories:
if label == categorie['name']:
return categorie['id']
return 1
def getbbox(self, points):
# img = np.zeros([self.height,self.width],np.uint8)
# cv2.polylines(img, [np.asarray(points)], True, 1, lineType=cv2.LINE_AA) # 画边界线
# cv2.fillPoly(img, [np.asarray(points)], 1) # 画多边形 内部像素值为1
polygons = points
mask = self.polygons_to_mask([self.height, self.width], polygons)
return self.mask2box(mask)
def mask2box(self, mask):
'''从mask反算出其边框
mask:[h,w] 0、1组成的图片
1对应对象,只需计算1对应的行列号(左上角行列号,右下角行列号,就可以算出其边框)
'''
# np.where(mask==1)
index = np.argwhere(mask == 1)
rows = index[:, 0]
clos = index[:, 1]
# 解析左上角行列号
left_top_r = np.min(rows) # y
left_top_c = np.min(clos) # x
# 解析右下角行列号
right_bottom_r = np.max(rows)
right_bottom_c = np.max(clos)
# return [(left_top_r,left_top_c),(right_bottom_r,right_bottom_c)]
# return [(left_top_c, left_top_r), (right_bottom_c, right_bottom_r)]
# return [left_top_c, left_top_r, right_bottom_c, right_bottom_r] # [x1,y1,x2,y2]
return [left_top_c, left_top_r, right_bottom_c - left_top_c,
right_bottom_r - left_top_r] # [x1,y1,w,h] 对应COCO的bbox格式
def polygons_to_mask(self, img_shape, polygons):
mask = np.zeros(img_shape, dtype=np.uint8)
mask = PIL.Image.fromarray(mask)
xy = list(map(tuple, polygons))
PIL.ImageDraw.Draw(mask).polygon(xy=xy, outline=1, fill=1)
mask = np.array(mask, dtype=bool)
return mask
def data2coco(self):
data_coco = {}
data_coco['images'] = self.images
data_coco['categories'] = self.categories
data_coco['annotations'] = self.annotations
return data_coco
def save_json(self):
self.data_transfer()
self.data_coco = self.data2coco()
# 保存json文件
json.dump(self.data_coco, open(self.save_json_path, 'w'), indent=4, cls=MyEncoder) # indent=4 更加美观显示
labelme_json = glob.glob(r'F:\my_data\annotations\*.json') #换成自己json文件所在路径
labelme2coco(labelme_json,"test.json")
print("完成")
创建 fruitsnuts_data.py 注册数据集
from detectron2.data.datasets import register_coco_instances
from detectron2.data import MetadataCatalog
import os
#声明类别,尽量保持
CLASS_NAMES =["cat","dog"]
# 数据集路径
DATASET_ROOT = r'E:\models\detectron2-master\my_data\data'
#标注文件夹路径
ANN_ROOT = os.path.join(DATASET_ROOT, 'annotations')
#训练图片路径
TRAIN_PATH = os.path.join(DATASET_ROOT, 'train')
#测试图片路径
VAL_PATH = os.path.join(DATASET_ROOT, 'val')
#训练集的标注文件
TRAIN_JSON = os.path.join(ANN_ROOT, 'train.json')
#验证集的标注文件
# VAL_JSON = os.path.join(ANN_ROOT, 'val.json')
#测试集的标注文件
VAL_JSON = os.path.join(ANN_ROOT, 'test.json')
register_coco_instances("my_train", {}, TRAIN_JSON, TRAIN_PATH)
MetadataCatalog.get("my_train").set(thing_classes=CLASS_NAMES, # 可以选择开启,但是不能显示中文,这里需要注意,中文的话最好关闭
evaluator_type='coco', # 指定评估方式
json_file=TRAIN_JSON,
image_root=TRAIN_PATH)
register_coco_instances("my_val", {}, VAL_JSON, VAL_PATH)
MetadataCatalog.get("my_val").set(thing_classes=CLASS_NAMES, # 可以选择开启,但是不能显示中文,这里需要注意,中文的话最好关闭
evaluator_type='coco', # 指定评估方式
json_file=VAL_JSON,
image_root=VAL_PATH)
from detectron2.engine import DefaultTrainer
from detectron2.config import get_cfg
from detectron2.utils.logger import setup_logger
import os
setup_logger()
import fruitsnuts_data #导入注册文件,完成注册
if __name__ == "__main__":
cfg = get_cfg()
cfg.merge_from_file(
"../configs/COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x.yaml"
)
cfg.DATASETS.TRAIN = ("my_train",)
cfg.DATASETS.TEST = ("my_val",) # 没有不用填
cfg.DATALOADER.NUM_WORKERS = 2
#预训练模型文件
#没有可以下载
cfg.MODEL.WEIGHTS = r"detectron2://COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x/137849600/model_final_f10217.pkl"
#或者使用自己的预训练模型
# cfg.MODEL.WEIGHTS = "../tools/output/model_0003191.pth"
cfg.SOLVER.IMS_PER_BATCH = 2
cfg.SOLVER.BASE_LR = 0.0025
#最大迭代次数
cfg.SOLVER.MAX_ITER = (2500)
cfg.MODEL.ROI_HEADS.BATCH_SIZE_PER_IMAGE = (128) # faster, and good enough for this toy dataset
cfg.MODEL.ROI_HEADS.NUM_CLASSES = 2 # 3 classes (data, fig, hazelnut)
os.makedirs(cfg.OUTPUT_DIR, exist_ok=True)
trainer = DefaultTrainer(cfg)
trainer.resume_or_load(resume=False)
trainer.train()
如果使用验证集验证出现如下报错:
No evaluator found. Use `DefaultTrainer.test(evaluators=)`, or implement its `build_evaluator` method.
参考: https://blog.csdn.net/weixin_42899627/article/details/119831887
from detectron2.utils.visualizer import Visualizer
from detectron2.data.catalog import MetadataCatalog
import cv2
from detectron2.config import get_cfg
import os
from detectron2.engine.defaults import DefaultPredictor
from detectron2.utils.visualizer import ColorMode
import fruitsnuts_data #导入注册文件,完成注册
fruits_nuts_metadata = MetadataCatalog.get("my_train") #换成自己注册的数据集
if __name__ == "__main__":
cfg = get_cfg()
#加载模型文件
cfg.merge_from_file(
"../configs/COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x.yaml"
)
#加载训练好的模型文件
cfg.MODEL.WEIGHTS = os.path.join(cfg.OUTPUT_DIR, "model_final.pth")
print('loading from: {}'.format(cfg.MODEL.WEIGHTS))
cfg.MODEL.ROI_HEADS.SCORE_THRESH_TEST = 0.5 # 阈值
cfg.MODEL.ROI_HEADS.NUM_CLASSES = 2 #类别数
cfg.DATASETS.TEST = ("my_val", )
predictor = DefaultPredictor(cfg)
data_f = 'test1.jpg' #测试图片
im = cv2.imread(data_f)
outputs = predictor(im)
v = Visualizer(im[:, :, ::-1],
metadata=fruits_nuts_metadata,
scale=0.8,
instance_mode=ColorMode.IMAGE_BW # remove the colors of unsegmented pixels
)
v = v.draw_instance_predictions(outputs["instances"].to("cpu"))
img = v.get_image()[:, :, ::-1]
cv2.imshow('rr', img)
cv2.waitKey(0)