java opencv 识别人形,OpenCV人形检测Hog

#include "iostream"

#include "queue"

using namespace std;

#include "opencv2/opencv.hpp"

#include "Windows.h"

#include "opencv2/core/core.hpp"

#include "opencv2/highgui/highgui.hpp"

#include "opencv2/imgproc/imgproc.hpp"

#include "opencv2/objdetect/objdetect.hpp"

using namespace cv;

int main()

{

try{

IplImage *pFrame = NULL;

CvCapture *pCapture = NULL;

//pCapture = cvCreateCameraCapture(-1);

//pCapture = cvCaptureFromCAM(0);

pCapture = cvCaptureFromFile("C:\\C_C++ code\\Photo and video\\TextVideo2.flv");

//pCapture = cvCaptureFromFile("C:\\C_C++ code\\Photo and video\\TextVideo1.flv");

if (!pCapture)

{

cout << "File opened fail..." << endl;

return -1;

}

Mat img;

HOGDescriptor hog;

Rect r;

int nNum = 0;

hog.setSVMDetector(HOGDescriptor::getDefaultPeopleDetector());

vector found,found1;

int i, j;

char str[100];

while (pFrame = cvQueryFrame(pCapture))

{

nNum++;

Mat img = cvarrToMat(pFrame, 0); //IplImage turn into Mat

if (nNum >= 3)

{

//进行检测

hog.detectMultiScale(img, found);

found1.clear();

//-------------------去除嵌套的矩形框------------------------

for (i = 0; i < found.size(); i++)

{

r = found[i];

for (j = 0; j < found.size(); j++)

{

if ( i != j && ((r&found[j]) == r) )

{

break;

}

}

if (j == found.size())

{

found1.push_back(r);

}

}

//画长方形 框出行人

for (i = 0; i < found1.size(); i++)

{

r = found1[i];

rectangle(img, r, Scalar(0, 255, 0), 1);

}

nNum = 0;

}

for (int i = 0; i < found1.size(); i++)

{

r = found1[i];

rectangle(img, r, Scalar(0, 255, 0), 1);

}

sprintf(str, "The track count is: %d", found1.size());

putText(img, str, cvPoint(30, 30), CV_FONT_HERSHEY_PLAIN, 0.8,CV_RGB(0, 0, 250),1,8);

imshow("Track People", img);

if (cvWaitKey(35) >= 0)

break;

}

}

catch (exception &e)

{

cout << e.what() << endl;

}

return 1;

}

效果:

图片人形测试:

#include "iostream"

#include "queue"

using namespace std;

#include "opencv2/opencv.hpp"

#include "Windows.h"

#include "opencv2/core/core.hpp"

#include "opencv2/highgui/highgui.hpp"

#include "opencv2/imgproc/imgproc.hpp"

#include "opencv2/objdetect/objdetect.hpp"

int main(int argc, char** argv){

Mat img;

vector found;

img = imread("C:\\C_C++ code\\Photo and video\\text006.jpg");

HOGDescriptor defaultHog;

defaultHog.setSVMDetector(HOGDescriptor::getDefaultPeopleDetector());

//进行检测

defaultHog.detectMultiScale(img, found);

//画长方形,框出行人

for (int i = 0; i < found.size(); i++){

Rect r = found[i];

rectangle(img, r, Scalar(0, 255, 0), 1);

}

namedWindow("检测行人", CV_WINDOW_AUTOSIZE);

imshow("检测行人", img);

waitKey(0);

return 0;

}

边框嵌套去重:

int main(int argc, char** argv){

Mat img;

vector found, foundRect;

img = imread("C:\\C_C++ code\\Photo and video\\text007.jpg");

HOGDescriptor defaultHog;

defaultHog.setSVMDetector(HOGDescriptor::getDefaultPeopleDetector());

//进行检测

defaultHog.detectMultiScale(img, found);

//遍历found寻找没有被嵌套的长方形

for (int i = 0; i < found.size(); i++){

Rect r = found[i];

int j = 0;

for (; j < found.size(); j++){

//如果时嵌套的就推出循环

if (j != i && (r & found[j]) == r)

break;

}

if (j == found.size()){

foundRect.push_back(r);

}

}

//画长方形,圈出行人

for (int i = 0; i < foundRect.size(); i++){

Rect r = foundRect[i];

rectangle(img, r.tl(), r.br(), Scalar(0, 0, 255), 3);

}

namedWindow("检测行人", CV_WINDOW_AUTOSIZE);

imshow("检测行人", img);

waitKey(0);

return 0;

}

int main()

{

Mat image = imread("C:\\C_C++ code\\Photo and video\\text007jpg");

imshow("hog", image);

if (image.empty())

{

cout << "read image failed" << endl;

}

// 1. 定义HOG对象

HOGDescriptor hog(Size(48,96), Size(16, 16), Size(8, 8), Size(8, 8), 9);

// 2. 设置SVM分类器

hog.setSVMDetector(HOGDescriptor::getDaimlerPeopleDetector()); // 采用已经训练好的行人检测分类器

// 3. 在测试图像上检测行人区域

std::vector<:rect> regions;

hog.detectMultiScale(image, regions, 0, cv::Size(8, 8), cv::Size(32, 32), 1.05, 1);

// 显示

for (size_t i = 0; i < regions.size(); i++)

{

cv::rectangle(image, regions[i], cv::Scalar(0, 0, 255), 2);

}

cv::imshow("hog", image);

cv::waitKey(0);

return 0;

}

你可能感兴趣的:(java,opencv,识别人形)