图神经网络 |BiGCN:双向低通滤波图神经网络

论文标题 BiGCN: A Bi-directional Low-Pass Filtering Graph Neural Network 

作者团队 Zhixian Chen, Tengfei Ma, Zhihua Jin, Yangqiu Song, Yang Wang 

发表时间 2021/01/14 

机 构 香港科技大学 

论文链接 https://arxiv.org/pdf/2101.05519.pdf

本文来自智源社区

【推荐理由】本文出自香港科技大学,作者提出了一种新的图卷积神经网络模型BIGCN,将模型神经网络表示为双向低通滤波器,在大多数基准数据集的节点分类和链接预测任务中,模型优于以前的图神经网络。

图卷积网络在图结构数据上取得了巨大的成功。许多图卷积网络可以视为图信号的低通滤波器。在本文中,作者团队提出了一种新的模型BiGCN,它将模型神经网络表示为双向低通滤波器。具体而言,仅考虑原始图结构信息,还考虑特征之间的潜在相关性,因此BiGCN可以将信号与原始图和潜在特征连接图一起过滤。在大多数基准数据集的节点分类和链接预测任务中,当向节点特征添加干扰项时,本文的模型优于以前的图神经网络。

下图为一层BIGCN图示,在特征图中,di表示特征的每个维度,输入特征矩阵的行向量作为其“特征向量”。使用可学习的矩阵来捕获特征相关性。

图神经网络 |BiGCN:双向低通滤波图神经网络_第1张图片

图神经网络 |BiGCN:双向低通滤波图神经网络_第2张图片

你可能感兴趣的:(神经网络,网络,人工智能,机器学习,计算机视觉)