1.
ID3算法优缺点:
① 不能对连续数据进行处理,只能通过连续数据离散化进行处理;
② 采用信息增益容易偏向取值较多的特征,准确率不如信息增益率;
③ 缺失值不好处理。
④ 没有采用剪枝,决策树的结构可能过于复杂,容易出现过拟合。
2.
C4.5算法优缺点:
① 产生的规则容易理解,准确率高,实现简单;
② 对数据进行多次顺序扫描和排序,效率低;
③ 只适合小规模数据集,需要将数据放到内存中
3.剪枝目的:
避免过拟合现象,提升模型的泛化效果
4.剪枝方法:
剪枝算法主要分为两种,预剪枝和后剪枝
预剪枝是在构建决策树的过程中,提前停止使模型性能变差的分支
5.预剪枝方法:
6.后剪枝方法:
7.下面是剪枝的实例:
(1)开始
import math
import numpy as np
(2)创建数据集:
# 创建西瓜书数据集2.0
def createDataXG20():
data = np.array([['青绿', '蜷缩', '浊响', '清晰', '凹陷', '硬滑']
, ['乌黑', '蜷缩', '沉闷', '清晰', '凹陷', '硬滑']
, ['乌黑', '蜷缩', '浊响', '清晰', '凹陷', '硬滑']
, ['青绿', '蜷缩', '沉闷', '清晰', '凹陷', '硬滑']
, ['浅白', '蜷缩', '浊响', '清晰', '凹陷', '硬滑']
, ['青绿', '稍蜷', '浊响', '清晰', '稍凹', '软粘']
, ['乌黑', '稍蜷', '浊响', '稍糊', '稍凹', '软粘']
, ['乌黑', '稍蜷', '浊响', '清晰', '稍凹', '硬滑']
, ['乌黑', '稍蜷', '沉闷', '稍糊', '稍凹', '硬滑']
, ['青绿', '硬挺', '清脆', '清晰', '平坦', '软粘']
, ['浅白', '硬挺', '清脆', '模糊', '平坦', '硬滑']
, ['浅白', '蜷缩', '浊响', '模糊', '平坦', '软粘']
, ['青绿', '稍蜷', '浊响', '稍糊', '凹陷', '硬滑']
, ['浅白', '稍蜷', '沉闷', '稍糊', '凹陷', '硬滑']
, ['乌黑', '稍蜷', '浊响', '清晰', '稍凹', '软粘']
, ['浅白', '蜷缩', '浊响', '模糊', '平坦', '硬滑']
, ['青绿', '蜷缩', '沉闷', '稍糊', '稍凹', '硬滑']])
label = np.array(['是', '是', '是', '是', '是', '是', '是', '是', '否', '否', '否', '否', '否', '否', '否', '否', '否'])
name = np.array(['色泽', '根蒂', '敲声', '纹理', '脐部', '触感'])
return data, label, name
def splitXgData20(xgData, xgLabel):
xgDataTrain = xgData[[0, 1, 2, 5, 6, 9, 13, 14, 15, 16],:]
xgDataTest = xgData[[3, 4, 7, 8, 10, 11, 12],:]
xgLabelTrain = xgLabel[[0, 1, 2, 5, 6, 9, 13, 14, 15, 16]]
xgLabelTest = xgLabel[[3, 4, 7, 8, 10, 11, 12]]
return xgDataTrain, xgLabelTrain, xgDataTest, xgLabelTest
(3) 创建基础函数:
# 定义一个常用函数 用来求numpy array中数值等于某值的元素数量
equalNums = lambda x,y: 0 if x is None else x[x==y].size
# 定义计算信息熵的函数
def singleEntropy(x):
"""计算一个输入序列的信息熵"""
# 转换为 numpy 矩阵
x = np.asarray(x)
# 取所有不同值
xValues = set(x)
# 计算熵值
entropy = 0
for xValue in xValues:
p = equalNums(x, xValue) / x.size
entropy -= p * math.log(p, 2)
return entropy
# 定义计算条件信息熵的函数
def conditionnalEntropy(feature, y):
"""计算 某特征feature 条件下y的信息熵"""
# 转换为numpy
feature = np.asarray(feature)
y = np.asarray(y)
# 取特征的不同值
featureValues = set(feature)
# 计算熵值
entropy = 0
for feat in featureValues:
# 解释:feature == feat 是得到取feature中所有元素值等于feat的元素的索引(类似这样理解)
# y[feature == feat] 是取y中 feature元素值等于feat的元素索引的 y的元素的子集
p = equalNums(feature, feat) / feature.size
entropy += p * singleEntropy(y[feature == feat])
return entropy
# 定义信息增益
def infoGain(feature, y):
return singleEntropy(y) - conditionnalEntropy(feature, y)
# 定义信息增益率
def infoGainRatio(feature, y):
return 0 if singleEntropy(feature) == 0 else infoGain(feature, y) / singleEntropy(feature)
(4)测试数据:
# 使用西瓜数据测试函数 p75-p77
xgData, xgLabel, xgName = createDataXG20()
print("书中Ent(D)为0.998,函数结果:" + str(round(singleEntropy(xgLabel), 4)))
print("书中Gain(D, 色泽)为0.109,函数结果:" + str(round(infoGain(xgData[:,0] ,xgLabel), 4)))
print("书中Gain(D, 根蒂)为0.143,函数结果:" + str(round(infoGain(xgData[:,1] ,xgLabel), 4)))
print("书中Gain(D, 敲声)为0.141,函数结果:" + str(round(infoGain(xgData[:,2] ,xgLabel), 4)))
print("书中Gain(D, 纹理)为0.381,函数结果:" + str(round(infoGain(xgData[:,3] ,xgLabel), 4)))
print("书中Gain(D, 脐部)为0.289,函数结果:" + str(round(infoGain(xgData[:,4] ,xgLabel), 4)))
print("书中Gain(D, 触感)为0.006,函数结果:" + str(round(infoGain(xgData[:,5] ,xgLabel), 4)))
测试结果:
(5)创建树生成相关函数
# 特征选取
def bestFeature(data, labels, method = 'id3'):
assert method in ['id3', 'c45'], "method 须为id3或c45"
data = np.asarray(data)
labels = np.asarray(labels)
# 根据输入的method选取 评估特征的方法:id3 -> 信息增益; c45 -> 信息增益率
def calcEnt(feature, labels):
if method == 'id3':
return infoGain(feature, labels)
elif method == 'c45' :
return infoGainRatio(feature, labels)
# 特征数量 即 data 的列数量
featureNum = data.shape[1]
# 计算最佳特征
bestEnt = 0
bestFeat = -1
for feature in range(featureNum):
ent = calcEnt(data[:, feature], labels)
if ent >= bestEnt:
bestEnt = ent
bestFeat = feature
# print("feature " + str(feature + 1) + " ent: " + str(ent)+ "\t bestEnt: " + str(bestEnt))
return bestFeat, bestEnt
# 根据特征及特征值分割原数据集 删除data中的feature列,并根据feature列中的值分割 data和label
def splitFeatureData(data, labels, feature):
"""feature 为特征列的索引"""
# 取特征列
features = np.asarray(data)[:,feature]
# 数据集中删除特征列
data = np.delete(np.asarray(data), feature, axis = 1)
# 标签
labels = np.asarray(labels)
uniqFeatures = set(features)
dataSet = {}
labelSet = {}
for feat in uniqFeatures:
dataSet[feat] = data[features == feat]
labelSet[feat] = labels[features == feat]
return dataSet, labelSet
# 多数投票
def voteLabel(labels):
uniqLabels = list(set(labels))
labels = np.asarray(labels)
finalLabel = 0
labelNum = []
for label in uniqLabels:
# 统计每个标签值得数量
labelNum.append(equalNums(labels, label))
# 返回数量最大的标签
return uniqLabels[labelNum.index(max(labelNum))]
# 创建决策树
def createTree(data, labels, names, method = 'id3'):
data = np.asarray(data)
labels = np.asarray(labels)
names = np.asarray(names)
# 如果结果为单一结果
if len(set(labels)) == 1:
return labels[0]
# 如果没有待分类特征
elif data.size == 0:
return voteLabel(labels)
# 其他情况则选取特征
bestFeat, bestEnt = bestFeature(data, labels, method = method)
# 取特征名称
bestFeatName = names[bestFeat]
# 从特征名称列表删除已取得特征名称
names = np.delete(names, [bestFeat])
# 根据选取的特征名称创建树节点
decisionTree = {bestFeatName: {}}
# 根据最优特征进行分割
dataSet, labelSet = splitFeatureData(data, labels, bestFeat)
# 对最优特征的每个特征值所分的数据子集进行计算
for featValue in dataSet.keys():
decisionTree[bestFeatName][featValue] = createTree(dataSet.get(featValue), labelSet.get(featValue), names, method)
return decisionTree
# 树信息统计 叶子节点数量 和 树深度
def getTreeSize(decisionTree):
nodeName = list(decisionTree.keys())[0]
nodeValue = decisionTree[nodeName]
leafNum = 0
treeDepth = 0
leafDepth = 0
for val in nodeValue.keys():
if type(nodeValue[val]) == dict:
leafNum += getTreeSize(nodeValue[val])[0]
leafDepth = 1 + getTreeSize(nodeValue[val])[1]
else :
leafNum += 1
leafDepth = 1
treeDepth = max(treeDepth, leafDepth)
return leafNum, treeDepth
# 使用模型对其他数据分类
def dtClassify(decisionTree, rowData, names):
names = list(names)
# 获取特征
feature = list(decisionTree.keys())[0]
# 决策树对于该特征的值的判断字段
featDict = decisionTree[feature]
# 获取特征的列
feat = names.index(feature)
# 获取数据该特征的值
featVal = rowData[feat]
# 根据特征值查找结果,如果结果是字典说明是子树,调用本函数递归
if featVal in featDict.keys():
if type(featDict[featVal]) == dict:
classLabel = dtClassify(featDict[featVal], rowData, names)
else:
classLabel = featDict[featVal]
return classLabel
(6)树可视化:
# 可视化 主要源自《机器学习实战》
import matplotlib.pyplot as plt
decisionNodeStyle = dict(boxstyle = "sawtooth", fc = "0.8")
leafNodeStyle = {"boxstyle": "round4", "fc": "0.8"}
arrowArgs = {"arrowstyle": "<-"}
# 画节点
def plotNode(nodeText, centerPt, parentPt, nodeStyle):
createPlot.ax1.annotate(nodeText, xy = parentPt, xycoords = "axes fraction", xytext = centerPt
, textcoords = "axes fraction", va = "center", ha="center", bbox = nodeStyle, arrowprops = arrowArgs)
# 添加箭头上的标注文字
def plotMidText(centerPt, parentPt, lineText):
xMid = (centerPt[0] + parentPt[0]) / 2.0
yMid = (centerPt[1] + parentPt[1]) / 2.0
createPlot.ax1.text(xMid, yMid, lineText)
# 画树
def plotTree(decisionTree, parentPt, parentValue):
# 计算宽与高
leafNum, treeDepth = getTreeSize(decisionTree)
# 在 1 * 1 的范围内画图,因此分母为 1
# 每个叶节点之间的偏移量
plotTree.xOff = plotTree.figSize / (plotTree.totalLeaf - 1)
# 每一层的高度偏移量
plotTree.yOff = plotTree.figSize / plotTree.totalDepth
# 节点名称
nodeName = list(decisionTree.keys())[0]
# 根节点的起止点相同,可避免画线;如果是中间节点,则从当前叶节点的位置开始,
# 然后加上本次子树的宽度的一半,则为决策节点的横向位置
centerPt = (plotTree.x + (leafNum - 1) * plotTree.xOff / 2.0, plotTree.y)
# 画出该决策节点
plotNode(nodeName, centerPt, parentPt, decisionNodeStyle)
# 标记本节点对应父节点的属性值
plotMidText(centerPt, parentPt, parentValue)
# 取本节点的属性值
treeValue = decisionTree[nodeName]
# 下一层各节点的高度
plotTree.y = plotTree.y - plotTree.yOff
# 绘制下一层
for val in treeValue.keys():
# 如果属性值对应的是字典,说明是子树,进行递归调用; 否则则为叶子节点
if type(treeValue[val]) == dict:
plotTree(treeValue[val], centerPt, str(val))
else:
plotNode(treeValue[val], (plotTree.x, plotTree.y), centerPt, leafNodeStyle)
plotMidText((plotTree.x, plotTree.y), centerPt, str(val))
# 移到下一个叶子节点
plotTree.x = plotTree.x + plotTree.xOff
# 递归完成后返回上一层
plotTree.y = plotTree.y + plotTree.yOff
# 画出决策树
def createPlot(decisionTree):
fig = plt.figure(1, facecolor = "white")
fig.clf()
axprops = {"xticks": [], "yticks": []}
createPlot.ax1 = plt.subplot(111, frameon = False, **axprops)
# 定义画图的图形尺寸
plotTree.figSize = 1.5
# 初始化树的总大小
plotTree.totalLeaf, plotTree.totalDepth = getTreeSize(decisionTree)
# 叶子节点的初始位置x 和 根节点的初始层高度y
plotTree.x = 0
plotTree.y = plotTree.figSize
plotTree(decisionTree, (plotTree.figSize / 2.0, plotTree.y), "")
plt.show()
(7)测试数据
# 使用西瓜数据测试函数 p75-p77
xgData, xgLabel, xgName = createDataXG20()
xgTree = createTree(xgData, xgLabel, xgName, method = 'id3')
print(xgTree)
createPlot(xgTree)
测试结果:
(8)预剪枝
# 创建预剪枝决策树
def createTreePrePruning(dataTrain, labelTrain, dataTest, labelTest, names, method = 'id3'):
"""
预剪枝 需要使用测试数据对每次的划分进行评估
策略说明:原本如果某节点划分前后的测试结果没有提升,根据奥卡姆剃刀原则将不进行划分(即执行剪枝),但考虑到这种策略容易造成欠拟合,
且不能排除后续划分有进一步提升的可能,因此,没有提升仍保留划分,即不剪枝
另外:周志华的书上评估的是某一个节点划分前后对该层所有数据综合评估,如评估对脐部 凹陷下色泽是否划分,
书上取的色泽划分前的精度是71.4%(5/7),划分后的精度是57.1%(4/7),都是脐部下三个特征(凹陷,稍凹,平坦)所有的数据的精度,计算也不易
而我觉得实际计算时,只对当前节点下的数据划分前后进行评估即可,如脐部凹陷时有三个测试样本,
三个样本色泽划分前的精度是2/3=66.7%,色泽划分后的精度是1/3=33.3%,因此判断不划分
"""
trainData = np.asarray(dataTrain)
labelTrain = np.asarray(labelTrain)
testData = np.asarray(dataTest)
labelTest = np.asarray(labelTest)
names = np.asarray(names)
# 如果结果为单一结果
if len(set(labelTrain)) == 1:
return labelTrain[0]
# 如果没有待分类特征
elif trainData.size == 0:
return voteLabel(labelTrain)
# 其他情况则选取特征
bestFeat, bestEnt = bestFeature(dataTrain, labelTrain, method = method)
# 取特征名称
bestFeatName = names[bestFeat]
# 从特征名称列表删除已取得特征名称
names = np.delete(names, [bestFeat])
# 根据最优特征进行分割
dataTrainSet, labelTrainSet = splitFeatureData(dataTrain, labelTrain, bestFeat)
# 预剪枝评估
# 划分前的分类标签
labelTrainLabelPre = voteLabel(labelTrain)
labelTrainRatioPre = equalNums(labelTrain, labelTrainLabelPre) / labelTrain.size
# 划分后的精度计算
if dataTest is not None:
dataTestSet, labelTestSet = splitFeatureData(dataTest, labelTest, bestFeat)
# 划分前的测试标签正确比例
labelTestRatioPre = equalNums(labelTest, labelTrainLabelPre) / labelTest.size
# 划分后 每个特征值的分类标签正确的数量
labelTrainEqNumPost = 0
for val in labelTrainSet.keys():
labelTrainEqNumPost += equalNums(labelTestSet.get(val), voteLabel(labelTrainSet.get(val))) + 0.0
# 划分后 正确的比例
labelTestRatioPost = labelTrainEqNumPost / labelTest.size
# 如果没有评估数据 但划分前的精度等于最小值0.5 则继续划分
if dataTest is None and labelTrainRatioPre == 0.5:
decisionTree = {bestFeatName: {}}
for featValue in dataTrainSet.keys():
decisionTree[bestFeatName][featValue] = createTreePrePruning(dataTrainSet.get(featValue), labelTrainSet.get(featValue)
, None, None, names, method)
elif dataTest is None:
return labelTrainLabelPre
# 如果划分后的精度相比划分前的精度下降, 则直接作为叶子节点返回
elif labelTestRatioPost < labelTestRatioPre:
return labelTrainLabelPre
else :
# 根据选取的特征名称创建树节点
decisionTree = {bestFeatName: {}}
# 对最优特征的每个特征值所分的数据子集进行计算
for featValue in dataTrainSet.keys():
decisionTree[bestFeatName][featValue] = createTreePrePruning(dataTrainSet.get(featValue), labelTrainSet.get(featValue)
, dataTestSet.get(featValue), labelTestSet.get(featValue)
, names, method)
return decisionTree
(9)预剪枝测试:
# 将西瓜数据2.0分割为测试集和训练集
xgDataTrain, xgLabelTrain, xgDataTest, xgLabelTest = splitXgData20(xgData, xgLabel)
# 生成不剪枝的树
xgTreeTrain = createTree(xgDataTrain, xgLabelTrain, xgName, method = 'id3')
# 生成预剪枝的树
xgTreePrePruning = createTreePrePruning(xgDataTrain, xgLabelTrain, xgDataTest, xgLabelTest, xgName, method = 'id3')
# 画剪枝前的树
print("剪枝前的树")
createPlot(xgTreeTrain)
# 画剪枝后的树
print("剪枝后的树")
createPlot(xgTreePrePruning)
# 创建决策树 带预划分标签
def createTreeWithLabel(data, labels, names, method = 'id3'):
data = np.asarray(data)
labels = np.asarray(labels)
names = np.asarray(names)
# 如果不划分的标签为
votedLabel = voteLabel(labels)
# 如果结果为单一结果
if len(set(labels)) == 1:
return votedLabel
# 如果没有待分类特征
elif data.size == 0:
return votedLabel
# 其他情况则选取特征
bestFeat, bestEnt = bestFeature(data, labels, method = method)
# 取特征名称
bestFeatName = names[bestFeat]
# 从特征名称列表删除已取得特征名称
names = np.delete(names, [bestFeat])
# 根据选取的特征名称创建树节点 划分前的标签votedPreDivisionLabel=_vpdl
decisionTree = {bestFeatName: {"_vpdl": votedLabel}}
# 根据最优特征进行分割
dataSet, labelSet = splitFeatureData(data, labels, bestFeat)
# 对最优特征的每个特征值所分的数据子集进行计算
for featValue in dataSet.keys():
decisionTree[bestFeatName][featValue] = createTreeWithLabel(dataSet.get(featValue), labelSet.get(featValue), names, method)
return decisionTree
# 将带预划分标签的tree转化为常规的tree
# 函数中进行的copy操作,原因见有道笔记 【YL20190621】关于Python中字典存储修改的思考
def convertTree(labeledTree):
labeledTreeNew = labeledTree.copy()
nodeName = list(labeledTree.keys())[0]
labeledTreeNew[nodeName] = labeledTree[nodeName].copy()
for val in list(labeledTree[nodeName].keys()):
if val == "_vpdl":
labeledTreeNew[nodeName].pop(val)
elif type(labeledTree[nodeName][val]) == dict:
labeledTreeNew[nodeName][val] = convertTree(labeledTree[nodeName][val])
return labeledTreeNew
# 后剪枝 训练完成后决策节点进行替换评估 这里可以直接对xgTreeTrain进行操作
def treePostPruning(labeledTree, dataTest, labelTest, names):
newTree = labeledTree.copy()
dataTest = np.asarray(dataTest)
labelTest = np.asarray(labelTest)
names = np.asarray(names)
# 取决策节点的名称 即特征的名称
featName = list(labeledTree.keys())[0]
# print("\n当前节点:" + featName)
# 取特征的列
featCol = np.argwhere(names==featName)[0][0]
names = np.delete(names, [featCol])
# print("当前节点划分的数据维度:" + str(names))
# print("当前节点划分的数据:" )
# print(dataTest)
# print(labelTest)
# 该特征下所有值的字典
newTree[featName] = labeledTree[featName].copy()
featValueDict = newTree[featName]
featPreLabel = featValueDict.pop("_vpdl")
# print("当前节点预划分标签:" + featPreLabel)
# 是否为子树的标记
subTreeFlag = 0
# 分割测试数据 如果有数据 则进行测试或递归调用 np的array我不知道怎么判断是否None, 用is None是错的
dataFlag = 1 if sum(dataTest.shape) > 0 else 0
if dataFlag == 1:
# print("当前节点有划分数据!")
dataTestSet, labelTestSet = splitFeatureData(dataTest, labelTest, featCol)
for featValue in featValueDict.keys():
# print("当前节点属性 {0} 的子节点:{1}".format(featValue ,str(featValueDict[featValue])))
if dataFlag == 1 and type(featValueDict[featValue]) == dict:
subTreeFlag = 1
# 如果是子树则递归
newTree[featName][featValue] = treePostPruning(featValueDict[featValue], dataTestSet.get(featValue), labelTestSet.get(featValue), names)
# 如果递归后为叶子 则后续进行评估
if type(featValueDict[featValue]) != dict:
subTreeFlag = 0
# 如果没有数据 则转换子树
if dataFlag == 0 and type(featValueDict[featValue]) == dict:
subTreeFlag = 1
# print("当前节点无划分数据!直接转换树:"+str(featValueDict[featValue]))
newTree[featName][featValue] = convertTree(featValueDict[featValue])
# print("转换结果:" + str(convertTree(featValueDict[featValue])))
# 如果全为叶子节点, 评估需要划分前的标签,这里思考两种方法,
# 一是,不改变原来的训练函数,评估时使用训练数据对划分前的节点标签重新打标
# 二是,改进训练函数,在训练的同时为每个节点增加划分前的标签,这样可以保证评估时只使用测试数据,避免再次使用大量的训练数据
# 这里考虑第二种方法 写新的函数 createTreeWithLabel,当然也可以修改createTree来添加参数实现
if subTreeFlag == 0:
ratioPreDivision = equalNums(labelTest, featPreLabel) / labelTest.size
equalNum = 0
for val in labelTestSet.keys():
equalNum += equalNums(labelTestSet[val], featValueDict[val])
ratioAfterDivision = equalNum / labelTest.size
# print("当前节点预划分标签的准确率:" + str(ratioPreDivision))
# print("当前节点划分后的准确率:" + str(ratioAfterDivision))
# 如果划分后的测试数据准确率低于划分前的,则划分无效,进行剪枝,即使节点等于预划分标签
# 注意这里取的是小于,如果有需要 也可以取 小于等于
if ratioAfterDivision < ratioPreDivision:
newTree = featPreLabel
return newTree
(11)代码测试:
# 书中的树结构 p81 p83
xgTreeBeforePostPruning = {"脐部": {"_vpdl": "是"
, '凹陷': {'色泽':{"_vpdl": "是", '青绿': '是', '乌黑': '是', '浅白': '否'}}
, '稍凹': {'根蒂':{"_vpdl": "是"
, '稍蜷': {'色泽': {"_vpdl": "是"
, '青绿': '是'
, '乌黑': {'纹理': {"_vpdl": "是"
, '稍糊': '是', '清晰': '否', '模糊': '是'}}
, '浅白': '是'}}
, '蜷缩': '否'
, '硬挺': '是'}}
, '平坦': '否'}}
xgTreePostPruning = treePostPruning(xgTreeBeforePostPruning, xgDataTest, xgLabelTest, xgName)
createPlot(convertTree(xgTreeBeforePostPruning))
createPlot(xgTreePostPruning)
输出: