配置HRFormer:High-Resolution Transformer for Dense Prediction条件

首先出现KEYERROR:"TopDown:HRT is not in the models registry"

之后开启了我的找错误之旅

1、重新建立环境

pytorch==1.7.1    cuda=10.1

1)mmpose的建立

        pip install mmpose==0.25.1

2)mmcv-full

pip install openmim
mim install mmcv-full==1.3.8

3)出现KEYERROR:"TopDown:HRT is not in the models registry"错误

报错原因

某些当前代码使用的方法没有注册到现有的包中, 导致在import的时候无法导入该方法。

解决方法

在该工程的根目录下:

  • 找到requirements.txt或者相关安装依赖环境的txt文件,重复安装一边;
  • 将该包中的所有方法重新安装即可.

首先创建环境

pip install -r requirements.txt

其次

pip install -v -e . 

如果移植自己的环境,仍然需要重新安装一遍以上环境。可以不安装requirements.txt这个环境。

关键代码解析:

# --------------------------------------------------------
# High Resolution Transformer
# Copyright (c) 2021 Microsoft
# Licensed under The MIT License [see LICENSE for details]
# Written by Rao Fu, RainbowSecret
# --------------------------------------------------------

import os
import math
import logging
import torch
import torch.nn as nn
from functools import partial


from mmcv.cnn import build_conv_layer, build_norm_layer

BN_MOMENTUM = 0.1

# --------------------------------------------------------
# Copyright (c) 2021 Microsoft
# Licensed under The MIT License [see LICENSE for details]
# Modified by Lang Huang, RainbowSecret from:
#   https://github.com/openseg-group/openseg.pytorch/blob/master/lib/models/modules/isa_block.py
# --------------------------------------------------------

import os
import pdb
import math
import torch
import torch.nn as nn

# --------------------------------------------------------
# Copyright (c) 2021 Microsoft
# Licensed under The MIT License [see LICENSE for details]
# Modified by Lang Huang, RainbowSecret from:
#   https://github.com/openseg-group/openseg.pytorch/blob/master/lib/models/modules/isa_block.py
# --------------------------------------------------------


import copy
import math
import warnings
import torch
from torch import nn, Tensor
from torch.nn import functional as F
from torch._jit_internal import Optional, Tuple
from torch.overrides import has_torch_function, handle_torch_function
from torch.nn.functional import linear, pad, softmax, dropout

from einops import rearrange
from timm.models.layers import to_2tuple, trunc_normal_

# --------------------------------------------------------
# Copyright (c) 2021 Microsoft
# Licensed under The MIT License [see LICENSE for details]
# Modified by RainbowSecret from:
#   https://github.com/pytorch/pytorch/blob/master/torch/nn/modules/activation.py#L852
# --------------------------------------------------------

import copy
import math
import warnings
import torch
import torch.nn.functional as F
from torch import nn, Tensor
from torch.nn.modules.module import Module
from torch._jit_internal import Optional, Tuple
from torch.overrides import has_torch_function, handle_torch_function
from torch.nn.functional import linear, pad, softmax, dropout


class MultiheadAttention(Module):
    bias_k: Optional[torch.Tensor]
    bias_v: Optional[torch.Tensor]

    def __init__(
        self,
        embed_dim,
        num_heads,
        dropout=0.0,
        bias=True,
        add_bias_kv=False,
        add_zero_attn=False,
        kdim=None,
        vdim=None,
    ):
        super(MultiheadAttention, self).__init__()
        self.embed_dim = embed_dim
        self.kdim = kdim if kdim is not None else embed_dim
        self.vdim = vdim if vdim is not None else embed_dim
        self._qkv_same_embed_dim = self.kdim == embed_dim and self.vdim == embed_dim

        self.num_heads = num_heads
        self.dropout = dropout
        self.head_dim = embed_dim // num_heads
        assert (
            self.head_dim * num_heads == self.embed_dim
        ), "embed_dim must be divisible by num_heads"

        self.k_proj = nn.Linear(self.kdim, embed_dim, bias=bias)
        self.v_proj = nn.Linear(self.vdim, embed_dim, bias=bias)
        self.q_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
        self.out_proj = nn.Linear(embed_dim, embed_dim)

        self.in_proj_bias = None
        self.in_proj_weight = None
        self.bias_k = self.bias_v = None
        self.q_proj_weight = None
        self.k_proj_weight = None
        self.v_proj_weight = None
        self.add_zero_attn = add_zero_attn

    def __setstate__(self, state):
        # Support loading old MultiheadAttention checkpoints generated by v1.1.0
        if "_qkv_same_embed_dim" not in state:
            state["_qkv_same_embed_dim"] = True

        super(MultiheadAttention, self).__setstate__(state)

    def forward(
        self,
        query,
        key,
        value,
        key_padding_mask=None,
        need_weights=False,
        attn_mask=None,
        residual_attn=None,
    ):
        if not self._qkv_same_embed_dim:
            return self.multi_head_attention_forward(
                query,
                key,
                value,
                self.embed_dim,
                self.num_heads,
                self.in_proj_weight,
                self.in_proj_bias,
                self.bias_k,
                self.bias_v,
                self.add_zero_attn,
                self.dropout,
                self.out_proj.weight,
                self.out_proj.bias,
                training=self.training,
                key_padding_mask=key_padding_mask,
                need_weights=need_weights,
                attn_mask=attn_mask,
                use_separate_proj_weight=True,
                q_proj_weight=self.q_proj_weight,
                k_proj_weight=self.k_proj_weight,
                v_proj_weight=self.v_proj_weight,
                out_dim=self.vdim,
                residual_attn=residual_attn,
            )
        else:
            return self.multi_head_attention_forward(
                query,
                key,
                value,
                self.embed_dim,
                self.num_heads,
                self.in_proj_weight,
                self.in_proj_bias,
                self.bias_k,
                self.bias_v,
                self.add_zero_attn,
                self.dropout,
                self.out_proj.weight,
                self.out_proj.bias,
                training=self.training,
                key_padding_mask=key_padding_mask,
                need_weights=need_weights,
                attn_mask=attn_mask,
                out_dim=self.vdim,
                residual_attn=residual_attn,
            )

    def multi_head_attention_forward(
        self,
        query: Tensor,
        key: Tensor,
        value: Tensor,
        embed_dim_to_check: int,
        num_heads: int,
        in_proj_weight: Tensor,
        in_proj_bias: Tensor,
        bias_k: Optional[Tensor],
        bias_v: Optional[Tensor],
        add_zero_attn: bool,
        dropout_p: float,
        out_proj_weight: Tensor,
        out_proj_bias: Tensor,
        training: bool = True,
        key_padding_mask: Optional[Tensor] = None,
        need_weights: bool = False,
        attn_mask: Optional[Tensor] = None,
        use_separate_proj_weight: bool = False,
        q_proj_weight: Optional[Tensor] = None,
        k_proj_weight: Optional[Tensor] = None,
        v_proj_weight: Optional[Tensor] = None,
        static_k: Optional[Tensor] = None,
        static_v: Optional[Tensor] = None,
        out_dim: Optional[Tensor] = None,
        residual_attn: Optional[Tensor] = None,
    ) -> Tuple[Tensor, Optional[Tensor]]:
        if not torch.jit.is_scripting():
            tens_ops = (
                query,
                key,
                value,
                in_proj_weight,
                in_proj_bias,
                bias_k,
                bias_v,
                out_proj_weight,
                out_proj_bias,
            )
            if any([type(t) is not Tensor for t in tens_ops]) and has_torch_function(
                tens_ops
            ):
                return handle_torch_function(
                    multi_head_attention_forward,
                    tens_ops,
                    query,
                    key,
                    value,
                    embed_dim_to_check,
                    num_heads,
                    in_proj_weight,
                    in_proj_bias,
                    bias_k,
                    bias_v,
                    add_zero_attn,
                    dropout_p,
                    out_proj_weight,
                    out_proj_bias,
                    training=training,
                    key_padding_mask=key_padding_mask,
                    need_weights=need_weights,
                    attn_mask=attn_mask,
                    use_separate_proj_weight=use_separate_proj_weight,
                    q_proj_weight=q_proj_weight,
                    k_proj_weight=k_proj_weight,
                    v_proj_weight=v_proj_weight,
                    static_k=static_k,
                    static_v=static_v,
                )
        tgt_len, bsz, embed_dim = query.size()
        key = query if key is None else key
        value = query if value is None else value

        assert embed_dim == embed_dim_to_check
        # allow MHA to have different sizes for the feature dimension
        assert key.size(0) == value.size(0) and key.size(1) == value.size(1)

        head_dim = embed_dim // num_heads
        v_head_dim = out_dim // num_heads
        assert (
            head_dim * num_heads == embed_dim
        ), "embed_dim must be divisible by num_heads"
        scaling = float(head_dim) ** -0.5

        q = self.q_proj(query) * scaling
        k = self.k_proj(key)
        v = self.v_proj(value)

        if attn_mask is not None:
            assert (
                attn_mask.dtype == torch.float32
                or attn_mask.dtype == torch.float64
                or attn_mask.dtype == torch.float16
                or attn_mask.dtype == torch.uint8
                or attn_mask.dtype == torch.bool
            ), "Only float, byte, and bool types are supported for attn_mask, not {}".format(
                attn_mask.dtype
            )
            if attn_mask.dtype == torch.uint8:
                warnings.warn(
                    "Byte tensor for attn_mask in nn.MultiheadAttention is deprecated. Use bool tensor instead."
                )
                attn_mask = attn_mask.to(torch.bool)

            if attn_mask.dim() == 2:
                attn_mask = attn_mask.unsqueeze(0)
                if list(attn_mask.size()) != [1, query.size(0), key.size(0)]:
                    raise RuntimeError("The size of the 2D attn_mask is not correct.")
            elif attn_mask.dim() == 3:
                if list(attn_mask.size()) != [
                    bsz * num_heads,
                    query.size(0),
                    key.size(0),
                ]:
                    raise RuntimeError("The size of the 3D attn_mask is not correct.")
            else:
                raise RuntimeError(
                    "attn_mask's dimension {} is not supported".format(attn_mask.dim())
                )

        # convert ByteTensor key_padding_mask to bool
        if key_padding_mask is not None and key_padding_mask.dtype == torch.uint8:
            warnings.warn(
                "Byte tensor for key_padding_mask in nn.MultiheadAttention is deprecated. Use bool tensor instead."
            )
            key_padding_mask = key_padding_mask.to(torch.bool)

        q = q.contiguous().view(tgt_len, bsz * num_heads, head_dim).transpose(0, 1)
        if k is not None:
            k = k.contiguous().view(-1, bsz * num_heads, head_dim).transpose(0, 1)
        if v is not None:
            v = v.contiguous().view(-1, bsz * num_heads, v_head_dim).transpose(0, 1)

        src_len = k.size(1)

        if key_padding_mask is not None:
            assert key_padding_mask.size(0) == bsz
            assert key_padding_mask.size(1) == src_len

        if add_zero_attn:
            src_len += 1
            k = torch.cat(
                [
                    k,
                    torch.zeros(
                        (k.size(0), 1) + k.size()[2:], dtype=k.dtype, device=k.device
                    ),
                ],
                dim=1,
            )
            v = torch.cat(
                [
                    v,
                    torch.zeros(
                        (v.size(0), 1) + v.size()[2:], dtype=v.dtype, device=v.device
                    ),
                ],
                dim=1,
            )
            if attn_mask is not None:
                attn_mask = pad(attn_mask, (0, 1))
            if key_padding_mask is not None:
                key_padding_mask = pad(key_padding_mask, (0, 1))

        attn_output_weights = torch.bmm(q, k.transpose(1, 2))
        assert list(attn_output_weights.size()) == [bsz * num_heads, tgt_len, src_len]

        """
        Attention weight for the invalid region is -inf
        """
        if attn_mask is not None:
            if attn_mask.dtype == torch.bool:
                attn_output_weights.masked_fill_(attn_mask, float("-inf"))
            else:
                attn_output_weights += attn_mask

        if key_padding_mask is not None:
            attn_output_weights = attn_output_weights.view(
                bsz, num_heads, tgt_len, src_len
            )
            attn_output_weights = attn_output_weights.masked_fill(
                key_padding_mask.unsqueeze(1).unsqueeze(2),
                float("-inf"),
            )
            attn_output_weights = attn_output_weights.view(
                bsz * num_heads, tgt_len, src_len
            )

        if residual_attn is not None:
            attn_output_weights = attn_output_weights.view(
                bsz, num_heads, tgt_len, src_len
            )
            attn_output_weights += residual_attn.unsqueeze(0)
            attn_output_weights = attn_output_weights.view(
                bsz * num_heads, tgt_len, src_len
            )

        """
        Reweight the attention map before softmax().
        attn_output_weights: (b*n_head, n, hw)
        """
        attn_output_weights = softmax(attn_output_weights, dim=-1)
        attn_output_weights = dropout(
            attn_output_weights, p=dropout_p, training=training
        )

        attn_output = torch.bmm(attn_output_weights, v)
        assert list(attn_output.size()) == [bsz * num_heads, tgt_len, v_head_dim]
        attn_output = (
            attn_output.transpose(0, 1).contiguous().view(tgt_len, bsz, out_dim)
        )
        attn_output = linear(attn_output, out_proj_weight, out_proj_bias)

        if need_weights:
            # average attention weights over heads
            attn_output_weights = attn_output_weights.view(
                bsz, num_heads, tgt_len, src_len
            )
            return attn_output, attn_output_weights.sum(dim=1) / num_heads
        else:
            return attn_output



class MHA_(MultiheadAttention):
    """ "Multihead Attention with extra flags on the q/k/v and out projections."""

    bias_k: Optional[torch.Tensor]
    bias_v: Optional[torch.Tensor]

    def __init__(self, *args, rpe=False, window_size=7, **kwargs):
        super(MHA_, self).__init__(*args, **kwargs)

        self.rpe = rpe
        if rpe:
            self.window_size = [window_size] * 2
            # define a parameter table of relative position bias
            self.relative_position_bias_table = nn.Parameter(
                torch.zeros(
                    (2 * self.window_size[0] - 1) * (2 * self.window_size[1] - 1),
                    self.num_heads,
                )
            )  # 2*Wh-1 * 2*Ww-1, nH
            # get pair-wise relative position index for each token inside the window
            coords_h = torch.arange(self.window_size[0])
            coords_w = torch.arange(self.window_size[1])
            coords = torch.stack(torch.meshgrid([coords_h, coords_w]))  # 2, Wh, Ww
            coords_flatten = torch.flatten(coords, 1)  # 2, Wh*Ww
            relative_coords = (
                coords_flatten[:, :, None] - coords_flatten[:, None, :]
            )  # 2, Wh*Ww, Wh*Ww
            relative_coords = relative_coords.permute(
                1, 2, 0
            ).contiguous()  # Wh*Ww, Wh*Ww, 2
            relative_coords[:, :, 0] += self.window_size[0] - 1  # shift to start from 0
            relative_coords[:, :, 1] += self.window_size[1] - 1
            relative_coords[:, :, 0] *= 2 * self.window_size[1] - 1
            relative_position_index = relative_coords.sum(-1)  # Wh*Ww, Wh*Ww
            self.register_buffer("relative_position_index", relative_position_index)
            trunc_normal_(self.relative_position_bias_table, std=0.02)

    def forward(
        self,
        query,
        key,
        value,
        key_padding_mask=None,
        need_weights=False,
        attn_mask=None,
        do_qkv_proj=True,
        do_out_proj=True,
        rpe=True,
    ):
        if not self._qkv_same_embed_dim:
            return self.multi_head_attention_forward(
                query,
                key,
                value,
                self.embed_dim,
                self.num_heads,
                self.in_proj_weight,
                self.in_proj_bias,
                self.bias_k,
                self.bias_v,
                self.add_zero_attn,
                self.dropout,
                self.out_proj.weight,
                self.out_proj.bias,
                training=self.training,
                key_padding_mask=key_padding_mask,
                need_weights=need_weights,
                attn_mask=attn_mask,
                use_separate_proj_weight=True,
                q_proj_weight=self.q_proj_weight,
                k_proj_weight=self.k_proj_weight,
                v_proj_weight=self.v_proj_weight,
                out_dim=self.vdim,
                do_qkv_proj=do_qkv_proj,
                do_out_proj=do_out_proj,
                rpe=rpe,
            )
        else:
            return self.multi_head_attention_forward(
                query,
                key,
                value,
                self.embed_dim,
                self.num_heads,
                self.in_proj_weight,
                self.in_proj_bias,
                self.bias_k,
                self.bias_v,
                self.add_zero_attn,
                self.dropout,
                self.out_proj.weight,
                self.out_proj.bias,
                training=self.training,
                key_padding_mask=key_padding_mask,
                need_weights=need_weights,
                attn_mask=attn_mask,
                out_dim=self.vdim,
                do_qkv_proj=do_qkv_proj,
                do_out_proj=do_out_proj,
                rpe=rpe,
            )

    def multi_head_attention_forward(
        self,
        query: Tensor,
        key: Tensor,
        value: Tensor,
        embed_dim_to_check: int,
        num_heads: int,
        in_proj_weight: Tensor,
        in_proj_bias: Tensor,
        bias_k: Optional[Tensor],
        bias_v: Optional[Tensor],
        add_zero_attn: bool,
        dropout_p: float,
        out_proj_weight: Tensor,
        out_proj_bias: Tensor,
        training: bool = True,
        key_padding_mask: Optional[Tensor] = None,
        need_weights: bool = False,
        attn_mask: Optional[Tensor] = None,
        use_separate_proj_weight: bool = False,
        q_proj_weight: Optional[Tensor] = None,
        k_proj_weight: Optional[Tensor] = None,
        v_proj_weight: Optional[Tensor] = None,
        static_k: Optional[Tensor] = None,
        static_v: Optional[Tensor] = None,
        out_dim: Optional[Tensor] = None,
        do_qkv_proj: bool = True,
        do_out_proj: bool = True,
        rpe=True,
    ) -> Tuple[Tensor, Optional[Tensor]]:
        if not torch.jit.is_scripting():
            tens_ops = (
                query,
                key,
                value,
                in_proj_weight,
                in_proj_bias,
                bias_k,
                bias_v,
                out_proj_weight,
                out_proj_bias,
            )
            if any([type(t) is not Tensor for t in tens_ops]) and has_torch_function(
                tens_ops
            ):
                return handle_torch_function(
                    multi_head_attention_forward,
                    tens_ops,
                    query,
                    key,
                    value,
                    embed_dim_to_check,
                    num_heads,
                    in_proj_weight,
                    in_proj_bias,
                    bias_k,
                    bias_v,
                    add_zero_attn,
                    dropout_p,
                    out_proj_weight,
                    out_proj_bias,
                    training=training,
                    key_padding_mask=key_padding_mask,
                    need_weights=need_weights,
                    attn_mask=attn_mask,
                    use_separate_proj_weight=use_separate_proj_weight,
                    q_proj_weight=q_proj_weight,
                    k_proj_weight=k_proj_weight,
                    v_proj_weight=v_proj_weight,
                    static_k=static_k,
                    static_v=static_v,
                )
        tgt_len, bsz, embed_dim = query.size()
        key = query if key is None else key
        value = query if value is None else value

        assert embed_dim == embed_dim_to_check
        # allow MHA to have different sizes for the feature dimension
        assert key.size(0) == value.size(0) and key.size(1) == value.size(1)

        head_dim = embed_dim // num_heads
        v_head_dim = out_dim // num_heads
        assert (
            head_dim * num_heads == embed_dim
        ), "embed_dim must be divisible by num_heads"
        scaling = float(head_dim) ** -0.5

        # whether or not use the original query/key/value
        q = self.q_proj(query) * scaling if do_qkv_proj else query
        k = self.k_proj(key) if do_qkv_proj else key
        v = self.v_proj(value) if do_qkv_proj else value

        if attn_mask is not None:
            assert (
                attn_mask.dtype == torch.float32
                or attn_mask.dtype == torch.float64
                or attn_mask.dtype == torch.float16
                or attn_mask.dtype == torch.uint8
                or attn_mask.dtype == torch.bool
            ), "Only float, byte, and bool types are supported for attn_mask, not {}".format(
                attn_mask.dtype
            )
            if attn_mask.dtype == torch.uint8:
                warnings.warn(
                    "Byte tensor for attn_mask in nn.MultiheadAttention is deprecated. Use bool tensor instead."
                )
                attn_mask = attn_mask.to(torch.bool)

            if attn_mask.dim() == 2:
                attn_mask = attn_mask.unsqueeze(0)
                if list(attn_mask.size()) != [1, query.size(0), key.size(0)]:
                    raise RuntimeError("The size of the 2D attn_mask is not correct.")
            elif attn_mask.dim() == 3:
                if list(attn_mask.size()) != [
                    bsz * num_heads,
                    query.size(0),
                    key.size(0),
                ]:
                    raise RuntimeError("The size of the 3D attn_mask is not correct.")
            else:
                raise RuntimeError(
                    "attn_mask's dimension {} is not supported".format(attn_mask.dim())
                )

        # convert ByteTensor key_padding_mask to bool
        if key_padding_mask is not None and key_padding_mask.dtype == torch.uint8:
            warnings.warn(
                "Byte tensor for key_padding_mask in nn.MultiheadAttention is deprecated. Use bool tensor instead."
            )
            key_padding_mask = key_padding_mask.to(torch.bool)

        q = q.contiguous().view(tgt_len, bsz * num_heads, head_dim).transpose(0, 1)
        if k is not None:
            k = k.contiguous().view(-1, bsz * num_heads, head_dim).transpose(0, 1)
        if v is not None:
            v = v.contiguous().view(-1, bsz * num_heads, v_head_dim).transpose(0, 1)

        src_len = k.size(1)

        if key_padding_mask is not None:
            assert key_padding_mask.size(0) == bsz
            assert key_padding_mask.size(1) == src_len

        if add_zero_attn:
            src_len += 1
            k = torch.cat(
                [
                    k,
                    torch.zeros(
                        (k.size(0), 1) + k.size()[2:], dtype=k.dtype, device=k.device
                    ),
                ],
                dim=1,
            )
            v = torch.cat(
                [
                    v,
                    torch.zeros(
                        (v.size(0), 1) + v.size()[2:], dtype=v.dtype, device=v.device
                    ),
                ],
                dim=1,
            )
            if attn_mask is not None:
                attn_mask = pad(attn_mask, (0, 1))
            if key_padding_mask is not None:
                key_padding_mask = pad(key_padding_mask, (0, 1))

        attn_output_weights = torch.bmm(q, k.transpose(1, 2))
        assert list(attn_output_weights.size()) == [bsz * num_heads, tgt_len, src_len]

        """
        Add relative position embedding
        """
        if self.rpe and rpe:
            # NOTE: for simplicity, we assume the src_len == tgt_len == window_size**2 here
            # print('src, tar, window', src_len, tgt_len, self.window_size[0], self.window_size[1])
            # assert src_len == self.window_size[0] * self.window_size[1] \
            #                   and tgt_len == self.window_size[0] * self.window_size[1], \
            #                   f"src{src_len}, tgt{tgt_len}, window{self.window_size[0]}"
            relative_position_bias = self.relative_position_bias_table[
                self.relative_position_index.view(-1)
            ].view(
                self.window_size[0] * self.window_size[1],
                self.window_size[0] * self.window_size[1],
                -1,
            )  # Wh*Ww,Wh*Ww,nH
            relative_position_bias = relative_position_bias.permute(
                2, 0, 1
            ).contiguous()  # nH, Wh*Ww, Wh*Ww
            # HELLO!!!!!
            attn_output_weights = attn_output_weights.view(
                bsz, num_heads, tgt_len, src_len
            )  # + relative_position_bias.unsqueeze(0)
            attn_output_weights = attn_output_weights.view(
                bsz * num_heads, tgt_len, src_len
            )

        """
        Attention weight for the invalid region is -inf
        """
        if attn_mask is not None:
            if attn_mask.dtype == torch.bool:
                attn_output_weights.masked_fill_(attn_mask, float("-inf"))
            else:
                attn_output_weights += attn_mask

        if key_padding_mask is not None:
            attn_output_weights = attn_output_weights.view(
                bsz, num_heads, tgt_len, src_len
            )
            attn_output_weights = attn_output_weights.masked_fill(
                key_padding_mask.unsqueeze(1).unsqueeze(2),
                float("-inf"),
            )
            attn_output_weights = attn_output_weights.view(
                bsz * num_heads, tgt_len, src_len
            )

        """
        Reweight the attention map before softmax().
        attn_output_weights: (b*n_head, n, hw)
        """
        attn_output_weights = softmax(attn_output_weights, dim=-1)
        attn_output_weights = dropout(
            attn_output_weights, p=dropout_p, training=training
        )

        attn_output = torch.bmm(attn_output_weights, v)
        assert list(attn_output.size()) == [bsz * num_heads, tgt_len, v_head_dim]
        attn_output = (
            attn_output.transpose(0, 1).contiguous().view(tgt_len, bsz, out_dim)
        )
        if do_out_proj:
            attn_output = linear(attn_output, out_proj_weight, out_proj_bias)

        if need_weights:
            # average attention weights over heads
            attn_output_weights = attn_output_weights.view(
                bsz, num_heads, tgt_len, src_len
            )
            return attn_output, q, k, attn_output_weights.sum(dim=1) / num_heads
        else:
            return attn_output, q, k  # additionaly return the query and key

#这里完成的是当featuremap尺寸不够除,需要在featuremap加入padding
class PadBlock(object):
    """ "Make the size of feature map divisible by local group size."""

    def __init__(self, local_group_size=7):
        self.lgs = local_group_size#7
        if not isinstance(self.lgs, (tuple, list)):
            self.lgs = to_2tuple(self.lgs)#元组(7,7)
        assert len(self.lgs) == 2

    def pad_if_needed(self, x, size):
        n, h, w, c = size
        pad_h = math.ceil(h / self.lgs[0]) * self.lgs[0] - h
        pad_w = math.ceil(w / self.lgs[1]) * self.lgs[1] - w
        if pad_h > 0 or pad_w > 0:  # center-pad the feature on H and W axes
            return F.pad(
                x,
                (0, 0, pad_w // 2, pad_w - pad_w // 2, pad_h // 2, pad_h - pad_h // 2),
            )#填充顺序在x的c,w,h维度进行填充
        return x

    def depad_if_needed(self, x, size):
        n, h, w, c = size
        pad_h = math.ceil(h / self.lgs[0]) * self.lgs[0] - h #按照我们假设的输入,pad_h=1
        pad_w = math.ceil(w / self.lgs[1]) * self.lgs[1] - w #pad_w=6
        if pad_h > 0 or pad_w > 0:  # remove the center-padding on feature
            return x[:, pad_h // 2 : pad_h // 2 + h, pad_w // 2 : pad_w // 2 + w, :]#x在h,w维度包含padding的值,为此需要删除掉没有padding
        return x


class LocalPermuteModule(object):
    """ "Permute the feature map to gather pixels in local groups, and the reverse permutation"""

    def __init__(self, local_group_size=7):
        self.lgs = local_group_size
        if not isinstance(self.lgs, (tuple, list)):
            self.lgs = to_2tuple(self.lgs)
        assert len(self.lgs) == 2
#完成进入atten时候的输入形式(B,N,C)
    def permute(self, x, size):
        n, h, w, c = size
        return rearrange(
            x,
            "n (qh ph) (qw pw) c -> (ph pw) (n qh qw) c",
            n=n,
            qh=h // self.lgs[0],
            ph=self.lgs[0],
            qw=w // self.lgs[0],
            pw=self.lgs[0],
            c=c,
        )
#将atten时候的输入形式(B,N,C)变成卷积的特征图谱维度
    def rev_permute(self, x, size):
        n, h, w, c = size
        return rearrange(
            x,
            "(ph pw) (n qh qw) c -> n (qh ph) (qw pw) c",
            n=n,
            qh=h // self.lgs[0],
            ph=self.lgs[0],
            qw=w // self.lgs[0],
            pw=self.lgs[0],
            c=c,
        )



class InterlacedPoolAttention(nn.Module):
    r"""interlaced sparse multi-head self attention (ISA) module with relative position bias.
    Args:
        dim (int): Number of input channels.
        window_size (tuple[int]): Window size.
        num_heads (int): Number of attention heads.
        qkv_bias (bool, optional):  If True, add a learnable bias to query, key, value. Default: True
        qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set
        attn_drop (float, optional): Dropout ratio of attention weight. Default: 0.0
        proj_drop (float, optional): Dropout ratio of output. Default: 0.0
    """
    def __init__(self, embed_dim, num_heads, window_size=7, rpe=True, **kwargs):
        super(InterlacedPoolAttention, self).__init__()

        self.dim = embed_dim
        self.num_heads = num_heads
        self.window_size = window_size
        self.with_rpe = rpe

        self.attn = MHA_(
            embed_dim, num_heads, rpe=rpe, window_size=window_size, **kwargs
        )
        self.pad_helper = PadBlock(window_size)



        self.permute_helper = LocalPermuteModule(window_size)

    def forward(self, x, H, W, **kwargs):
        B, N, C = x.shape
        x = x.view(B, H, W, C)
        print('x', x.shape)#x torch.Size([78, 48, 64, 78])
        # attention
        # pad
        x_pad = self.pad_helper.pad_if_needed(x, x.size())
        print('x_pad', x_pad.shape)#x_pad torch.Size([78, 49, 70, 78])
        # permute
        x_permute = self.permute_helper.permute(x_pad, x_pad.size())
        print('x_permute', x_permute.shape)  # x_permute torch.Size([49, 5460, 78])
        # attention
        out, _, _ = self.attn(
            x_permute, x_permute, x_permute, rpe=self.with_rpe, **kwargs
        )
        print('out', out.shape)#out torch.Size([49, 5460, 78])
        # reverse permutation
        out = self.permute_helper.rev_permute(out, x_pad.size())
        print('out1', out.shape)#out1 torch.Size([78, 49, 70, 78])
        # de-pad, pooling with `ceil_mode=True` will do implicit padding, so we need to remove it, too
        out = self.pad_helper.depad_if_needed(out, x.size())
        # print('out.reshape(B, N, C)',out.reshape(B, N, C).shape)#out.reshape(B, N, C) torch.Size([78, 3072, 78])
        return out.reshape(B, N, C)



def drop_path(x, drop_prob: float = 0.0, training: bool = False):
    """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
    This is the same as the DropConnect impl I created for EfficientNet, etc networks, however,
    the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper...
    See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for
    changing the layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use
    'survival rate' as the argument.
    """
    if drop_prob == 0.0 or not training:
        return x
    keep_prob = 1 - drop_prob
    shape = (x.shape[0],) + (1,) * (
        x.ndim - 1
    )  # work with diff dim tensors, not just 2D ConvNets
    random_tensor = keep_prob + torch.rand(shape, dtype=x.dtype, device=x.device)
    random_tensor.floor_()  # binarize
    output = x.div(keep_prob) * random_tensor
    return output


class DropPath(nn.Module):
    """Drop paths (Stochastic Depth) per sample  (when applied in main path of residual blocks)."""

    def __init__(self, drop_prob=None):
        super(DropPath, self).__init__()
        self.drop_prob = drop_prob

    def forward(self, x):
        return drop_path(x, self.drop_prob, self.training)

    def extra_repr(self):
        # (Optional)Set the extra information about this module. You can test
        # it by printing an object of this class.
        return "drop_prob={}".format(self.drop_prob)


class MlpDWBN(nn.Module):
    def __init__(
        self,
        in_features,
        hidden_features=None,
        out_features=None,
        act_layer=nn.GELU,
        dw_act_layer=nn.GELU,
        drop=0.0,
        conv_cfg=None,
        norm_cfg=dict(type="BN", requires_grad=True),
    ):
        super().__init__()
        out_features = out_features or in_features
        hidden_features = hidden_features or in_features
        self.fc1 = build_conv_layer(
            conv_cfg,
            in_features,
            hidden_features,
            kernel_size=1,
            stride=1,
            padding=0,
            bias=True,
        )
        self.act1 = act_layer()
        self.norm1 = build_norm_layer(norm_cfg, hidden_features)[1]
        self.dw3x3 = build_conv_layer(
            conv_cfg,
            hidden_features,
            hidden_features,
            kernel_size=3,
            stride=1,
            padding=1,
            groups=hidden_features,
        )
        self.act2 = dw_act_layer()
        self.norm2 = build_norm_layer(norm_cfg, hidden_features)[1]
        self.fc2 = build_conv_layer(
            conv_cfg,
            hidden_features,
            out_features,
            kernel_size=1,
            stride=1,
            padding=0,
            bias=True,
        )
        self.act3 = act_layer()
        self.norm3 = build_norm_layer(norm_cfg, out_features)[1]
        # self.drop = nn.Dropout(drop, inplace=True)

    def forward(self, x, H, W):
        if len(x.shape) == 3:
            B, N, C = x.shape
            if N == (H * W + 1):
                cls_tokens = x[:, 0, :]
                x_ = x[:, 1:, :].permute(0, 2, 1).contiguous().reshape(B, C, H, W)
            else:
                x_ = x.permute(0, 2, 1).contiguous().reshape(B, C, H, W)

            x_ = self.fc1(x_)
            x_ = self.norm1(x_)
            x_ = self.act1(x_)
            x_ = self.dw3x3(x_)
            x_ = self.norm2(x_)
            x_ = self.act2(x_)
            # x_ = self.drop(x_)
            x_ = self.fc2(x_)
            x_ = self.norm3(x_)
            x_ = self.act3(x_)
            # x_ = self.drop(x_)
            x_ = x_.reshape(B, C, -1).permute(0, 2, 1).contiguous()
            if N == (H * W + 1):
                x = torch.cat((cls_tokens.unsqueeze(1), x_), dim=1)
            else:
                x = x_
            return x

        elif len(x.shape) == 4:
            x = self.fc1(x)
            x = self.norm1(x)
            x = self.act1(x)
            x = self.dw3x3(x)
            x = self.norm2(x)
            x = self.act2(x)
            x = self.drop(x)
            x = self.fc2(x)
            x = self.norm3(x)
            x = self.act3(x)
            x = self.drop(x)
            return x

        else:
            raise RuntimeError("Unsupported input shape: {}".format(x.shape))


class GeneralTransformerBlock(nn.Module):
    expansion = 1

    def __init__(
        self,
        inplanes,
        planes,
        num_heads,
        window_size=7,
        mlp_ratio=4.0,
        qkv_bias=True,
        qk_scale=None,
        drop=0.0,
        attn_drop=0.0,
        drop_path=0.0,
        act_layer=nn.GELU,
        norm_layer=partial(nn.LayerNorm, eps=1e-6),
        conv_cfg=None,
        norm_cfg=dict(type="BN", requires_grad=True),
    ):
        super().__init__()
        self.dim = inplanes
        self.out_dim = planes
        self.num_heads = num_heads
        self.window_size = window_size
        self.mlp_ratio = mlp_ratio
        self.conv_cfg = conv_cfg
        self.norm_cfg = norm_cfg

        self.attn = InterlacedPoolAttention(
            self.dim, num_heads=num_heads, window_size=window_size, dropout=attn_drop
        )

        self.norm1 = norm_layer(self.dim)
        self.norm2 = norm_layer(self.out_dim)
        self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity()
        mlp_hidden_dim = int(self.dim * mlp_ratio)
        self.mlp = MlpDWBN(
            in_features=self.dim,
            hidden_features=mlp_hidden_dim,
            out_features=self.out_dim,
            act_layer=act_layer,
            dw_act_layer=act_layer,
            drop=drop,
            conv_cfg=conv_cfg,
            norm_cfg=norm_cfg,
        )

    def forward(self, x):
        B, C, H, W = x.size()
        # reshape
        x = x.view(B, C, -1).permute(0, 2, 1).contiguous()
        # Attention
        x = x + self.drop_path(self.attn(self.norm1(x), H, W))
        # FFN
        x = x + self.drop_path(self.mlp(self.norm2(x), H, W))
        # reshape
        x = x.permute(0, 2, 1).contiguous().view(B, C, H, W)
        return x


a = torch.randn(78,78,48, 64)
b = GeneralTransformerBlock(78,78,3)
c = b(a)
print('c',c.shape)

你可能感兴趣的:(pycharm,人体姿态估计,transformer,深度学习,人工智能)