皮带跑偏检测系统 [Python+YOLOv7]

皮带跑偏检测系统通过Python基于YOLOv7网络架构训练模型,对现场皮带跑偏状况进行实时分析检测。我们使用YOLO(你只看一次)算法进行对象检测。YOLO是一个聪明的卷积神经网络(CNN),用于实时进行目标检测。该算法将单个神经网络应用于完整的图像,然后将图像划分为多个区域,并预测每个区域的边界框和概率。这些边界框是由预测的概率加权的。要理解YOLO,我们首先要分别理解这两个模型。

YOLOv7 在 5 FPS 到 160 FPS 范围内,速度和精度都超过了所有已知的目标检测器。并在V100 上,30 FPS 的情况下达到实时目标检测器的最高精度 56.8% AP。YOLOv7 是在 MS COCO 数据集上从头开始训练的,不使用任何其他数据集或预训练权重。

相对于其他类型的工具,YOLOv7-E6 目标检测器(56 FPS V100,55.9% AP)比基于 transformer 的检测器 SWINL Cascade-Mask R-CNN(9.2 FPS A100,53.9% AP)速度上高出 509%,精度高出 2%,比基于卷积的检测器 ConvNeXt-XL Cascade-Mask R-CNN (8.6 FPS A100, 55.2% AP) 速度高出 551%,精度高出 0.7%。

Adapter接口定义了如下方法:

public abstract void registerDataSetObserver (DataSetObserver observer) 
Adapter表示一个数据源,这个数据源是有可能发生变化的,比如增加了数据、删除了数据、修改了数据,当数据发生变化的时候,它要通知相应的AdapterView做出相应的改变。为了实现这个功能,Adapter使用了观察者模式,Adapter本身相当于被观察的对象,AdapterView相当于观察者,通过调用registerDataSetObserver方法,给Adapter注册观察者。

public abstract void unregisterDataSetObserver (DataSetObserver observer) 
通过调用unregisterDataSetObserver方法,反注册观察者。

public abstract int getCount () 
返回Adapter中数据的数量。

public abstract Object getItem (int position) 
Adapter中的数据类似于数组,里面每一项就是对应一条数据,每条数据都有一个索引位置,即position,根据position可以获取Adapter中对应的数据项。

public abstract long getItemId (int position) 
获取指定position数据项的id,通常情况下会将position作为id。在Adapter中,相对来说,position使用比id使用频率更高。

你可能感兴趣的:(python,深度学习,计算机视觉,目标检测,人工智能)