- 【论文投稿】探秘计算机视觉算法:开启智能视觉新时代
小周不想卷
艾思科蓝学术会议投稿计算机视觉
目录引言一、计算机视觉算法基石:图像基础与预处理二、特征提取:视觉信息的精华萃取三、目标检测:从图像中精准定位目标四、图像分类:识别图像所属类别五、语义分割:理解图像的像素级语义六、计算机视觉算法前沿趋势与挑战引言在当今数字化浪潮中,计算机视觉宛如一颗璀璨的明珠,正深刻地改变着我们与世界的交互方式。从安防监控中的精准识别,到自动驾驶汽车的智能导航;从医疗影像的辅助诊断,到工业生产中的缺陷检测,计算
- 递归算法实践--到仓合单助力京东物流提效增收
程序员
作者:京东物流李硕#一、背景京东物流到仓业务「对商家」为了减少商家按照京东采购单分货备货过程,对齐行业直接按照流向交接,提升商家满意度;「对京东」揽收操作APP提效;到仓合单功能应运而生;二、问题一次批量采购单(一次50或者100个采购单)需要根据不同的规则合并成多个订单;每一个采购单可以是不同的来源类型(自营和非自营)、不同的收货类型,每一个采购单会有多个SKU,同一个SKU只有一个等级,一批采
- 什么是多模态机器学习:跨感知融合的智能前沿
非凡暖阳
人工智能神经网络
在人工智能的广阔天地里,多模态机器学习(MultimodalMachineLearning)作为一项前沿技术,正逐步解锁人机交互和信息理解的新境界。它超越了单一感官输入的限制,通过整合视觉、听觉、文本等多种数据类型,构建了一个更加丰富、立体的认知模型,为机器赋予了接近人类的综合感知与理解能力。本文将深入探讨多模态机器学习的定义、核心原理、关键技术、面临的挑战以及未来的应用前景,旨在为读者勾勒出这一
- 使用Llama 3.2-Vision多模态LLM与您的图像聊天
AI程序猿人
llamatransformerpytorch深度学习大模型应用人工智能大模型
介绍将视觉能力与大型语言模型(LLMs)结合的多模态LLM(MLLM)正在通过多模态LLM革命性地改变计算机视觉领域。这些模型结合了文本和视觉输入,展示了在图像理解和推理方面的出色能力。虽然这些模型以前只能通过API访问,但最近的开源选项现在允许本地执行,使其在生产环境中更具吸引力。在此教程中,我们将学习如何使用开源的Llama3.2-Vision模型与图像进行聊天,你会对其OCR、图像理解和推理
- 谷歌吹响反击号角:2025年Gemini用户目标5亿,AI大战一触即发!
that's boy
人工智能chatgptopenaiAI工具AI编程googlegemini
人工智能领域的竞争日趋白热化,谷歌CEO桑达·皮采亲自下场,为GeminiAI定下了雄心勃勃的目标:到2025年底,用户突破5亿!面对ChatGPT的强势崛起,谷歌能否成功逆袭?本文将深入剖析谷歌的战略布局、Gemini的技术优势以及未来AI竞争的格局。谷歌的反击:5亿用户的雄心壮志在过去几年,OpenAI凭借ChatGPT的强大实力,几乎垄断了AI领域的聚光灯。谷歌虽然在AI技术研究方面一直处于
- AI大模型如何赋能电商行业,引领变革
虞书欣的C
人工智能开发语言
•个性化推荐:利用机器学习算法分析用户的历史购买记录、浏览行为和喜好,生成个性化的产品推荐列表,提升用户的购买意愿和满意度。•优化用户体验:•智能搜索引擎:运用自然语言处理技术,优化搜索引擎,让用户能够通过自然语言进行搜索。•虚拟客服:通过聊天机器人和语音助手,提供24/7的客户支持,快速解答用户咨询。•图像识别:利用计算机视觉技术,用户可以通过拍照识别商品,快速找到相似商品或进行排版搭配推荐。•
- AI大模型引领医疗变革:十大创新应用场景塑造智慧医疗新时代
和老莫一起学AI
人工智能自动化数据库学习语言模型大模型
前言在人工智能技术的迅猛发展中,AI大模型以其无与伦比的数据处理能力和深度学习能力,正逐步成为医疗健康领域变革的引领者。本文旨在深入探讨AI大模型在医疗领域的十大创新应用场景,展示其如何显著提升医疗服务效率、赋能临床决策,并推动整个行业向智能化转型。一、智能化诊疗:精准辅助,提升诊断效率AI大模型凭借对海量医疗数据的深度分析,能够协助医生进行更为精准的诊断。例如,百度灵医大模型凭借强大的数据处理能
- python爬虫 短视频平台数据抓取:抓取视频和评论
Python爬虫项目
2025年爬虫实战项目python爬虫音视频网络爬虫开发语言
随着短视频平台如抖音、快手、TikTok等的兴起,越来越多的内容创作者和观众通过短视频平台分享和观看视频内容。短视频平台包含了丰富的数据,如视频内容、评论、点赞数、分享数等,这些数据对市场分析、用户行为分析、视频推荐算法等方面具有重要意义。抓取这些数据可以帮助我们获取平台的动态信息,为数据分析提供基础。本文将详细介绍如何使用Python编写爬虫抓取短视频平台上的视频和评论数据,包括技术栈选择、爬虫
- Delphi代码编写标准指南
好大的牛角
分享一下我老师大神的人工智能教程!零基础,通俗易懂!http://blog.csdn.net/jiangjunshow也欢迎大家转载本篇文章。分享知识,造福人民,实现我们中华民族伟大复兴!·日月光华精华区文章阅读发信人:Delphii(Delphi),信区:VCL标题:Delphi编码规则发信站:日月光华站(FriSep712:03:072001),站内信件Delphi代码编写标准指南■■■■■■
- pythonsvm模型优化_Python进化算法工具箱的使用(三)用进化算法优化SVM参数
weixin_39878698
pythonsvm模型优化
前言自从上两篇博客详细讲解了Python遗传和进化算法工具箱及其在带约束的单目标函数值优化中的应用以及利用遗传算法求解有向图的最短路径之后,我经过不断学习工具箱的官方文档以及对源码的研究,更加掌握如何利用遗传算法求解更多有趣的问题了。与前面的文章不同,本篇采用差分进化算法来优化SVM中的参数C和Gamma。(用遗传算法也可以,下面会给出效果比较)首先简单回顾一下Python高性能实用型遗传和进化算
- 差分进化算法_Python进化算法工具箱的使用(三)用进化算法优化SVM参数
weixin_39747075
差分进化算法
前言自从上两篇博客详细讲解了Python遗传和进化算法工具箱及其在带约束的单目标函数值优化中的应用以及利用遗传算法求解有向图的最短路径之后,我经过不断学习工具箱的官方文档以及对源码的研究,更加掌握如何利用遗传算法求解更多有趣的问题了。与前面的文章不同,本篇采用差分进化算法来优化SVM中的参数C和Gamma。(用遗传算法也可以,下面会给出效果比较)首先简单回顾一下Python高性能实用型遗传和进化算
- 径向基函数网络(RBF):让数据“点亮”神经网络的“灯塔”
ningaiiii
机器学习与深度学习神经网络php人工智能
径向基函数网络(RBF):让数据“点亮”神经网络的“灯塔”1.引言径向基函数网络(RadialBasisFunctionNetwork,RBF)是一种特殊的前馈神经网络,它的核心思想是通过“灯塔”来照亮数据的分布。RBF网络使用径向基函数(如高斯函数)作为隐层神经元的激活函数,能够快速学习数据的局部特征,特别适合分类和函数逼近问题。2.算法原理2.1网络结构RBF网络的基本组成包括:输入层:接收原
- 数学:机器学习的理论基石
每天五分钟玩转人工智能
机器学习人工智能
一、数学:机器学习的理论基石机器学习是一种通过数据学习模式和规律的科学。其核心目标是从数据中提取有用的信息,以便对未知数据进行预测和分类。为了实现这一目标,机器学习需要一种数学框架来描述和解决问题。数学在机器学习中起着至关重要的作用,它提供了一种数学模型来描述数据和模式,以及一种数学方法来优化模型。数学在机器学习中的应用非常广泛,涵盖了线性代数、概率论、统计学、微积分、优化等多个领域。这些数学方法
- 差分进化算法DE
DroidMind
智能算法与机器学习差分进化算法
差分进化算法DE属于进化算法,这里算法还包括依次遗传算法、进化策略、进化规划。差分进化算法包括三个基本的操作:变异操作、交叉(重组)操作和选择操作。一、算法建模:1、假设我们希望得到函数f(x)的最优解,这个函数有D个解。2、为函数f(x)设置一个解的组数N,N至少为4。3、这样我们就得到了N组并且每组解的个数为D的集合,它可以使用N个D维参数向量来表示。因为它类似于遗传算法进化一样,是一代一代的
- 【机器学习:二十六、决策树】
KeyPan
机器学习机器学习决策树人工智能算法深度学习数据挖掘
1.决策树概述决策树是一种基于树状结构的监督学习算法,既可以用于分类任务,也可以用于回归任务。其主要通过递归地将数据划分为子集,从而生成一个具有条件结构的树模型。核心概念节点(Node):每个节点表示一个特定的决策条件。根节点(RootNode):树的起点,包含所有样本。分支(Branch):每个分支代表一个条件划分的结果。叶节点(LeafNode):终止节点,表示最终的决策结果。优点直观可解释:
- 差分进化算法(Differential evolution,DE)(附详细注释的Python代码)
XijueJa
算法python开发语言
概念与基本原理差分进化算法(DifferentialEvolution,简称DE)是一种基于种群的随机优化算法,由Storm和Price在1995年提出。它主要应用于解决非线性、非凸、连续和离散的优化问题。DE算法以其简单性、鲁棒性和高效性而受到广泛关注。差分进化算法的基本思想是通过模拟自然进化过程中的遗传和变异机制来寻找问题的最优解,类似于遗传算法。通过变异、交叉与选择,使得初始化的种群不断朝最
- “AI 自动化效能评估系统:开启企业高效发展新征程
上海拔俗网络
java团队开发
在当今数字化飞速发展的时代,企业面临着日益激烈的市场竞争,如何提升效率、降低成本成为了企业生存与发展的关键。AI自动化效能评估系统应运而生,它如同一把智能钥匙,为企业开启了高效发展的新征程。AI自动化效能评估系统,简单来说,就是利用人工智能技术对企业的各项业务流程、生产环节以及员工工作表现等进行全方位、自动化的评估。它能够快速收集海量的数据,并通过先进的算法模型对这些数据进行深度分析,从而精准地判
- 力扣刷题之——旋转矩阵
say-input
矩阵leetcode算法
给你一幅由N×N矩阵表示的图像,其中每个像素的大小为4字节。请你设计一种算法,将图像旋转90度。不占用额外内存空间能否做到?示例1:给定matrix=[[1,2,3],[4,5,6],[7,8,9]],原地旋转输入矩阵,使其变为:[[7,4,1],[8,5,2],[9,6,3]]作者:力扣(LeetCode)链接:https://leetcode.cn/leetbook/read/array-an
- 大模型系列-GPT算法
樨潮
人工智能
https://blog.csdn.net/None_Pan/article/details/106392965
- LeetCode 1426 题:数元素解题全解析
MasterNeverDown
leetcode算法职场和发展
LeetCode1426题:数元素解题全解析在算法的世界里,每一道题目都是一次挑战与探索。今天,我们来深入剖析LeetCode上的一道有趣题目——1426.数元素。一、题目剖析给定一个整数数组arr,这里有着独特的计数规则:对于元素x,唯有当x+1也在数组arr中时,这个x才能被记为1个数。特别要注意的是,若数组arr中有重复的数,每个重复的数都要单独依据此规则进行计算。比如,示例1中输入arr=
- 3d系统误差分析
Ai智享
结构光3d数码相机计算机视觉
系统标定重投影误差预估在计算机视觉和三维重建领域中,评估一个相机系统标定精度的重要指标。通过比较真实的三维点在图像中的投影位置与标定模型计算出的投影位置之间的差异,来衡量标定的准确性。以下是对这一概念的详细解析:什么是系统标定?系统标定(SystemCalibration)是指对一个视觉系统(例如单目相机、双目相机系统或结构光系统)进行参数标定的过程,包括:内参标定:相机的内部参数(如焦距、光心、
- 2807. 在链表中插入最大公约数
不玩return的马可乐
链表数据结构leetcode算法职场和发展c++
在本篇博客文章中,我们将探讨如何实现一个算法,该算法可以在链表中相邻节点之间插入一个新的节点,新节点的值为相邻两个节点值的最大公约数(GCD)。这个问题是LeetCode上的一个中等难度问题,涉及到链表操作和最大公约数的计算。问题描述解题思路理解问题首先,我们需要理解问题的核心:在链表的相邻节点之间插入新节点,新节点的值为相邻节点值的最大公约数。计算最大公约数我们需要一个函数来计算两个数的最大公约
- 机器学习数学基础-极值和最值
华东算法王(原聪明的小孩子
小孩哥解析宋浩微积分机器学习算法人工智能
极值和最值极值和最值是数学中关于函数变化的重要概念,它们描述了函数在某些点附近或在整个定义域内的“最大”或“最小”行为。理解极值和最值对优化问题、函数分析、物理建模等领域有重要的应用。1.极值(LocalExtrema)极值是指函数在某个区间内的某一点取得的局部最大值或最小值。(1)局部最大值(LocalMaximum)一个函数在某点(x=c)取得局部最大值,意味着存在一个包含(c)的小区间,使得
- leetcode 215.数组中的第K个最大元素
嘤国大力士
LeetCodeleetcode算法数据结构
LeetCode第215题“数组中的第K个最大元素”要求找到未排序数组中第k个最大的元素。通常有几种常见的解决方案,包括使用排序、使用最小堆或快速选择算法。以下是这三种方法的详细C++实现:方法一:使用排序这种方法最为直观,先对数组进行排序,然后返回第k个最大的元素。#include#include#includeusingnamespacestd;classSolution{public:int
- 深入了解JSON:Python中JSON的全面应用指南
kdayjj966
开发语言jsonpython
JSON(JavaScriptObjectNotation)是一种广泛使用的数据交换格式,以其轻量级和易于阅读及解析的特性而备受欢迎。JSON起源于JavaScript,但已经被许多编程语言广泛支持,包括Python。本教程将深入探讨JSON的构造、数据类型,以及在Python中的多种操作方式。JSON的基础构造JSON由两种主要结构组成:对象(Object)和数组(Array)。对象(Objec
- 智能体(AI Agent):概念、原理与应用,全面解析AI技术前沿!
和老莫一起学AI
人工智能学习数据库产品经理机器学习ai大模型
一、智能体概念的深度剖析1.1智能体(Agent)的本质智能体,作为人工智能领域的一颗璀璨明珠,是那些能够主动感知周遭环境、自主决策并付诸实践的系统实体。它们不仅拥有自主性、交互性、反应灵敏及高度适应性等鲜明特征,更在复杂多变的情境中展现出卓越的自我管理与任务执行能力。智能体的诞生,标志着人工智能技术从机械式的规则遵循迈向了更为灵活、智能的自主决策新时代。智能体的核心精髓在于其内置的学习与决策引擎
- 基于人工智能的Python面试题
请一直在路上
python开发语言
基于人工智能的Python面试题1.Python中的元组与列表区别是什么?列表是可变类型,元组不是。列表是引用类型,元组不是。列表使用场景更宽泛,元组更多用于一些数据不可变的场景,例如参数、或者返回值。2.Python中的字典是否有序?python3.6之前字典是无序的,之后是有序的。原因可以参考下这个帖子https://blog.csdn.net/weixin_48629601/article/
- 17-7 向量数据库之野望7 - PostgreSQL 和pgvector
拉达曼迪斯II
AIGC学习数据库管理工具AI创业数据库postgresql人工智能机器学习AIGC搜索引擎
PostgreSQL是一款功能强大的开源对象关系数据库系统,它已将其功能扩展到传统数据管理之外,通过pgvector扩展支持矢量数据。这一新增功能满足了对高效处理高维矢量数据日益增长的需求,这些数据通常用于机器学习、自然语言处理(NLP)和推荐系统等应用。https://github.com/mazzasaverio/find-your-opensource-project什么是pgvector?
- matlab实现一个雷达信号处理的程序,涉及到对原始图像的模拟、加权、加噪以及通过迭代算法对图像进行恢复和优化处理
max500600
MATLAB算法算法matlab信号处理
clcclearcloseallloadscene3.mat%加载原始图像,自己设计设计为一个300*400的矩阵300是距离向长度,400是方位向长度Map_ori=scene3;[M,N_K]=size(Map_ori);figureimagesc(scene3)v=100;%机载速度,单位m/sbandwidth=30*1e6;%信号带宽,决定距离分辨率,单位Hzc=3*1e8;%光速R_R
- 如何学懂C++语言:C++从入门到精通的全面指南(完整C++学习笔记)
猿享天开
c++学习笔记
数字人助手猿小美带你一起学编程一、引言作为一名拥有多年开发经验的技术人员,我的职业生涯涵盖了多种编程语言,包括C语言、C++、C#和JavaScript等。在我多年的编程生涯中,这些语言不仅丰富了我的知识储备,还极大地拓展了我的视野和技能。出于对编程的热爱,以及希望帮助更多编程爱好者的目的,我决定利用业余时间整理一套全面的C++语言学习指南。这套指南旨在为C++语言编程爱好者提供一个清晰的学习路线
- jQuery 跨域访问的三种方式 No 'Access-Control-Allow-Origin' header is present on the reque
qiaolevip
每天进步一点点学习永无止境跨域众观千象
XMLHttpRequest cannot load http://v.xxx.com. No 'Access-Control-Allow-Origin' header is present on the requested resource. Origin 'http://localhost:63342' is therefore not allowed access. test.html:1
- mysql 分区查询优化
annan211
java分区优化mysql
分区查询优化
引入分区可以给查询带来一定的优势,但同时也会引入一些bug.
分区最大的优点就是优化器可以根据分区函数来过滤掉一些分区,通过分区过滤可以让查询扫描更少的数据。
所以,对于访问分区表来说,很重要的一点是要在where 条件中带入分区,让优化器过滤掉无需访问的分区。
可以通过查看explain执行计划,是否携带 partitions
- MYSQL存储过程中使用游标
chicony
Mysql存储过程
DELIMITER $$
DROP PROCEDURE IF EXISTS getUserInfo $$
CREATE PROCEDURE getUserInfo(in date_day datetime)-- -- 实例-- 存储过程名为:getUserInfo-- 参数为:date_day日期格式:2008-03-08-- BEGINdecla
- mysql 和 sqlite 区别
Array_06
sqlite
转载:
http://www.cnblogs.com/ygm900/p/3460663.html
mysql 和 sqlite 区别
SQLITE是单机数据库。功能简约,小型化,追求最大磁盘效率
MYSQL是完善的服务器数据库。功能全面,综合化,追求最大并发效率
MYSQL、Sybase、Oracle等这些都是试用于服务器数据量大功能多需要安装,例如网站访问量比较大的。而sq
- pinyin4j使用
oloz
pinyin4j
首先需要pinyin4j的jar包支持;jar包已上传至附件内
方法一:把汉字转换为拼音;例如:编程转换后则为biancheng
/**
* 将汉字转换为全拼
* @param src 你的需要转换的汉字
* @param isUPPERCASE 是否转换为大写的拼音; true:转换为大写;fal
- 微博发送私信
随意而生
微博
在前面文章中说了如和获取登陆时候所需要的cookie,现在只要拿到最后登陆所需要的cookie,然后抓包分析一下微博私信发送界面
http://weibo.com/message/history?uid=****&name=****
可以发现其发送提交的Post请求和其中的数据,
让后用程序模拟发送POST请求中的数据,带着cookie发送到私信的接入口,就可以实现发私信的功能了。
- jsp
香水浓
jsp
JSP初始化
容器载入JSP文件后,它会在为请求提供任何服务前调用jspInit()方法。如果您需要执行自定义的JSP初始化任务,复写jspInit()方法就行了
JSP执行
这一阶段描述了JSP生命周期中一切与请求相关的交互行为,直到被销毁。
当JSP网页完成初始化后
- 在 Windows 上安装 SVN Subversion 服务端
AdyZhang
SVN
在 Windows 上安装 SVN Subversion 服务端2009-09-16高宏伟哈尔滨市道里区通达街291号
最佳阅读效果请访问原地址:http://blog.donews.com/dukejoe/archive/2009/09/16/1560917.aspx
现在的Subversion已经足够稳定,而且已经进入了它的黄金时段。我们看到大量的项目都在使
- android开发中如何使用 alertDialog从listView中删除数据?
aijuans
android
我现在使用listView展示了很多的配置信息,我现在想在点击其中一条的时候填出 alertDialog,点击确认后就删除该条数据,( ArrayAdapter ,ArrayList,listView 全部删除),我知道在 下面的onItemLongClick 方法中 参数 arg2 是选中的序号,但是我不知道如何继续处理下去 1 2 3
- jdk-6u26-linux-x64.bin 安装
baalwolf
linux
1.上传安装文件(jdk-6u26-linux-x64.bin)
2.修改权限
[root@localhost ~]# ls -l /usr/local/jdk-6u26-linux-x64.bin
3.执行安装文件
[root@localhost ~]# cd /usr/local
[root@localhost local]# ./jdk-6u26-linux-x64.bin&nbs
- MongoDB经典面试题集锦
BigBird2012
mongodb
1.什么是NoSQL数据库?NoSQL和RDBMS有什么区别?在哪些情况下使用和不使用NoSQL数据库?
NoSQL是非关系型数据库,NoSQL = Not Only SQL。
关系型数据库采用的结构化的数据,NoSQL采用的是键值对的方式存储数据。
在处理非结构化/半结构化的大数据时;在水平方向上进行扩展时;随时应对动态增加的数据项时可以优先考虑使用NoSQL数据库。
在考虑数据库的成熟
- JavaScript异步编程Promise模式的6个特性
bijian1013
JavaScriptPromise
Promise是一个非常有价值的构造器,能够帮助你避免使用镶套匿名方法,而使用更具有可读性的方式组装异步代码。这里我们将介绍6个最简单的特性。
在我们开始正式介绍之前,我们想看看Javascript Promise的样子:
var p = new Promise(function(r
- [Zookeeper学习笔记之八]Zookeeper源代码分析之Zookeeper.ZKWatchManager
bit1129
zookeeper
ClientWatchManager接口
//接口的唯一方法materialize用于确定那些Watcher需要被通知
//确定Watcher需要三方面的因素1.事件状态 2.事件类型 3.znode的path
public interface ClientWatchManager {
/**
* Return a set of watchers that should
- 【Scala十五】Scala核心九:隐式转换之二
bit1129
scala
隐式转换存在的必要性,
在Java Swing中,按钮点击事件的处理,转换为Scala的的写法如下:
val button = new JButton
button.addActionListener(
new ActionListener {
def actionPerformed(event: ActionEvent) {
- Android JSON数据的解析与封装小Demo
ronin47
转自:http://www.open-open.com/lib/view/open1420529336406.html
package com.example.jsondemo;
import org.json.JSONArray;
import org.json.JSONException;
import org.json.JSONObject;
impor
- [设计]字体创意设计方法谈
brotherlamp
UIui自学ui视频ui教程ui资料
从古至今,文字在我们的生活中是必不可少的事物,我们不能想象没有文字的世界将会是怎样。在平面设计中,UI设计师在文字上所花的心思和功夫最多,因为文字能直观地表达UI设计师所的意念。在文字上的创造设计,直接反映出平面作品的主题。
如设计一幅戴尔笔记本电脑的广告海报,假设海报上没有出现“戴尔”两个文字,即使放上所有戴尔笔记本电脑的图片都不能让人们得知这些电脑是什么品牌。只要写上“戴尔笔
- 单调队列-用一个长度为k的窗在整数数列上移动,求窗里面所包含的数的最大值
bylijinnan
java算法面试题
import java.util.LinkedList;
/*
单调队列 滑动窗口
单调队列是这样的一个队列:队列里面的元素是有序的,是递增或者递减
题目:给定一个长度为N的整数数列a(i),i=0,1,...,N-1和窗长度k.
要求:f(i) = max{a(i-k+1),a(i-k+2),..., a(i)},i = 0,1,...,N-1
问题的另一种描述就
- struts2处理一个form多个submit
chiangfai
struts2
web应用中,为完成不同工作,一个jsp的form标签可能有多个submit。如下代码:
<s:form action="submit" method="post" namespace="/my">
<s:textfield name="msg" label="叙述:">
- shell查找上个月,陷阱及野路子
chenchao051
shell
date -d "-1 month" +%F
以上这段代码,假如在2012/10/31执行,结果并不会出现你预计的9月份,而是会出现八月份,原因是10月份有31天,9月份30天,所以-1 month在10月份看来要减去31天,所以直接到了8月31日这天,这不靠谱。
野路子解决:假设当天日期大于15号
- mysql导出数据中文乱码问题
daizj
mysql中文乱码导数据
解决mysql导入导出数据乱码问题方法:
1、进入mysql,通过如下命令查看数据库编码方式:
mysql> show variables like 'character_set_%';
+--------------------------+----------------------------------------+
| Variable_name&nbs
- SAE部署Smarty出现:Uncaught exception 'SmartyException' with message 'unable to write
dcj3sjt126com
PHPsmartysae
对于SAE出现的问题:Uncaught exception 'SmartyException' with message 'unable to write file...。
官方给出了详细的FAQ:http://sae.sina.com.cn/?m=faqs&catId=11#show_213
解决方案为:
01
$path
- 《教父》系列台词
dcj3sjt126com
Your love is also your weak point.
你的所爱同时也是你的弱点。
If anything in this life is certain, if history has taught us anything, it is
that you can kill anyone.
不顾家的人永远不可能成为一个真正的男人。 &
- mongodb安装与使用
dyy_gusi
mongo
一.MongoDB安装和启动,widndows和linux基本相同
1.下载数据库,
linux:mongodb-linux-x86_64-ubuntu1404-3.0.3.tgz
2.解压文件,并且放置到合适的位置
tar -vxf mongodb-linux-x86_64-ubun
- Git排除目录
geeksun
git
在Git的版本控制中,可能有些文件是不需要加入控制的,那我们在提交代码时就需要忽略这些文件,下面讲讲应该怎么给Git配置一些忽略规则。
有三种方法可以忽略掉这些文件,这三种方法都能达到目的,只不过适用情景不一样。
1. 针对单一工程排除文件
这种方式会让这个工程的所有修改者在克隆代码的同时,也能克隆到过滤规则,而不用自己再写一份,这就能保证所有修改者应用的都是同一
- Ubuntu 创建开机自启动脚本的方法
hongtoushizi
ubuntu
转载自: http://rongjih.blog.163.com/blog/static/33574461201111504843245/
Ubuntu 创建开机自启动脚本的步骤如下:
1) 将你的启动脚本复制到 /etc/init.d目录下 以下假设你的脚本文件名为 test。
2) 设置脚本文件的权限 $ sudo chmod 755
- 第八章 流量复制/AB测试/协程
jinnianshilongnian
nginxluacoroutine
流量复制
在实际开发中经常涉及到项目的升级,而该升级不能简单的上线就完事了,需要验证该升级是否兼容老的上线,因此可能需要并行运行两个项目一段时间进行数据比对和校验,待没问题后再进行上线。这其实就需要进行流量复制,把流量复制到其他服务器上,一种方式是使用如tcpcopy引流;另外我们还可以使用nginx的HttpLuaModule模块中的ngx.location.capture_multi进行并发
- 电商系统商品表设计
lkl
DROP TABLE IF EXISTS `category`; -- 类目表
/*!40101 SET @saved_cs_client = @@character_set_client */;
/*!40101 SET character_set_client = utf8 */;
CREATE TABLE `category` (
`id` int(11) NOT NUL
- 修改phpMyAdmin导入SQL文件的大小限制
pda158
sqlmysql
用phpMyAdmin导入mysql数据库时,我的10M的
数据库不能导入,提示mysql数据库最大只能导入2M。
phpMyAdmin数据库导入出错: You probably tried to upload too large file. Please refer to documentation for ways to workaround this limit.
- Tomcat性能调优方案
Sobfist
apachejvmtomcat应用服务器
一、操作系统调优
对于操作系统优化来说,是尽可能的增大可使用的内存容量、提高CPU的频率,保证文件系统的读写速率等。经过压力测试验证,在并发连接很多的情况下,CPU的处理能力越强,系统运行速度越快。。
【适用场景】 任何项目。
二、Java虚拟机调优
应该选择SUN的JVM,在满足项目需要的前提下,尽量选用版本较高的JVM,一般来说高版本产品在速度和效率上比低版本会有改进。
J
- SQLServer学习笔记
vipbooks
数据结构xml
1、create database school 创建数据库school
2、drop database school 删除数据库school
3、use school 连接到school数据库,使其成为当前数据库
4、create table class(classID int primary key identity not null)
创建一个名为class的表,其有一