新的循环神经网络——LSTM与GRU

@(Aaron)[机器学习 | ModernRNN]

主要内容包括:

  • GRU/LSTM/深层RNN/双向RNN

文章目录

    • GRU
      • 载入数据集
      • 初始化参数
      • GRU模型
      • 训练模型
      • 简洁实现
    • LSTM
      • 初始化参数
      • LSTM模型
      • 训练模型
      • 简洁实现
    • 深度循环神经网络
    • 双向循环神经网络

GRU

  RNN存在的问题:梯度较容易出现衰减或爆炸(BPTT)
  ⻔控循环神经⽹络:捕捉时间序列中时间步距离较⼤的依赖关系
RNN:
新的循环神经网络——LSTM与GRU_第1张图片

H t = ϕ ( X t W x h + H t − 1 W h h + b h ) H_{t} = ϕ(X_{t}W_{xh} + H_{t-1}W_{hh} + b_{h}) Ht=ϕ(XtWxh+Ht1Whh+bh)
GRU:

新的循环神经网络——LSTM与GRU_第2张图片

R t = σ ( X t W x r + H t − 1 W h r + b r ) Z t = σ ( X t W x z + H t − 1 W h z + b z ) H ~ t = t a n h ( X t W x h + ( R t ⊙ H t − 1 ) W h h + b h ) H t = Z t ⊙ H t − 1 + ( 1 − Z t ) ⊙ H ~ t R_{t} = σ(X_tW_{xr} + H_{t−1}W_{hr} + b_r)\\ Z_{t} = σ(X_tW_{xz} + H_{t−1}W_{hz} + b_z)\\ \widetilde{H}_t = tanh(X_tW_{xh} + (R_t ⊙H_{t−1})W_{hh} + b_h)\\ H_t = Z_t⊙H_{t−1} + (1−Z_t)⊙\widetilde{H}_t Rt=σ(XtWxr+Ht1Whr+br)Zt=σ(XtWxz+Ht1Whz+bz)H t=tanh(XtWxh+(RtHt1)Whh+bh)Ht=ZtHt1+(1Zt)H t
  • 重置⻔有助于捕捉时间序列⾥短期的依赖关系;
  • 更新⻔有助于捕捉时间序列⾥⻓期的依赖关系。

载入数据集

import os
os.listdir('/home/kesci/input')
import numpy as np
import torch
from torch import nn, optim
import torch.nn.functional as F
import sys
sys.path.append("../input/")
import d2l_jay9460 as d2l
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

(corpus_indices, char_to_idx, idx_to_char, vocab_size) = d2l.load_data_jay_lyrics()

初始化参数

num_inputs, num_hiddens, num_outputs = vocab_size, 256, vocab_size
print('will use', device)

def get_params():  
    def _one(shape):
        ts = torch.tensor(np.random.normal(0, 0.01, size=shape), device=device, dtype=torch.float32) #正态分布
        return torch.nn.Parameter(ts, requires_grad=True)
    def _three():
        return (_one((num_inputs, num_hiddens)),
                _one((num_hiddens, num_hiddens)),
                torch.nn.Parameter(torch.zeros(num_hiddens, device=device, dtype=torch.float32), requires_grad=True))
     
    W_xz, W_hz, b_z = _three()  # 更新门参数
    W_xr, W_hr, b_r = _three()  # 重置门参数
    W_xh, W_hh, b_h = _three()  # 候选隐藏状态参数
    
    # 输出层参数
    W_hq = _one((num_hiddens, num_outputs))
    b_q = torch.nn.Parameter(torch.zeros(num_outputs, device=device, dtype=torch.float32), requires_grad=True)
    return nn.ParameterList([W_xz, W_hz, b_z, W_xr, W_hr, b_r, W_xh, W_hh, b_h, W_hq, b_q])

def init_gru_state(batch_size, num_hiddens, device):   #隐藏状态初始化
    return (torch.zeros((batch_size, num_hiddens), device=device), )

GRU模型

def gru(inputs, state, params):
    W_xz, W_hz, b_z, W_xr, W_hr, b_r, W_xh, W_hh, b_h, W_hq, b_q = params
    H, = state
    outputs = []
    for X in inputs:
        Z = torch.sigmoid(torch.matmul(X, W_xz) + torch.matmul(H, W_hz) + b_z)
        R = torch.sigmoid(torch.matmul(X, W_xr) + torch.matmul(H, W_hr) + b_r)
        H_tilda = torch.tanh(torch.matmul(X, W_xh) + R * torch.matmul(H, W_hh) + b_h)
        H = Z * H + (1 - Z) * H_tilda
        Y = torch.matmul(H, W_hq) + b_q
        outputs.append(Y)
    return outputs, (H,)

训练模型

num_epochs, num_steps, batch_size, lr, clipping_theta = 160, 35, 32, 1e2, 1e-2
pred_period, pred_len, prefixes = 40, 50, ['分开', '不分开']

d2l.train_and_predict_rnn(gru, get_params, init_gru_state, num_hiddens,
                          vocab_size, device, corpus_indices, idx_to_char,
                          char_to_idx, False, num_epochs, num_steps, lr,
                          clipping_theta, batch_size, pred_period, pred_len,
                          prefixes)

简洁实现

num_hiddens=256
num_epochs, num_steps, batch_size, lr, clipping_theta = 160, 35, 32, 1e2, 1e-2
pred_period, pred_len, prefixes = 40, 50, ['分开', '不分开']

lr = 1e-2 # 注意调整学习率
gru_layer = nn.GRU(input_size=vocab_size, hidden_size=num_hiddens)
model = d2l.RNNModel(gru_layer, vocab_size).to(device)
d2l.train_and_predict_rnn_pytorch(model, num_hiddens, vocab_size, device,
                                corpus_indices, idx_to_char, char_to_idx,
                                num_epochs, num_steps, lr, clipping_theta,
                                batch_size, pred_period, pred_len, prefixes)

LSTM

长短期记忆long short-term memory:

  遗忘门:控制上一时间步的记忆细胞
  输入门:控制当前时间步的输入
  输出门:控制从记忆细胞到隐藏状态
  记忆细胞:⼀种特殊的隐藏状态的信息的流动

新的循环神经网络——LSTM与GRU_第3张图片

I t = σ ( X t W x i + H t − 1 W h i + b i ) F t = σ ( X t W x f + H t − 1 W h f + b f ) O t = σ ( X t W x o + H t − 1 W h o + b o ) C ~ t = t a n h ( X t W x c + H t − 1 W h c + b c ) C t = F t ⊙ C t − 1 + I t ⊙ C ~ t H t = O t ⊙ t a n h ( C t ) I_t = σ(X_tW_{xi} + H_{t−1}W_{hi} + b_i) \\ F_t = σ(X_tW_{xf} + H_{t−1}W_{hf} + b_f)\\ O_t = σ(X_tW_{xo} + H_{t−1}W_{ho} + b_o)\\ \widetilde{C}_t = tanh(X_tW_{xc} + H_{t−1}W_{hc} + b_c)\\ C_t = F_t ⊙C_{t−1} + I_t ⊙\widetilde{C}_t\\ H_t = O_t⊙tanh(C_t) It=σ(XtWxi+Ht1Whi+bi)Ft=σ(XtWxf+Ht1Whf+bf)Ot=σ(XtWxo+Ht1Who+bo)C t=tanh(XtWxc+Ht1Whc+bc)Ct=FtCt1+ItC tHt=Ottanh(Ct)

初始化参数

num_inputs, num_hiddens, num_outputs = vocab_size, 256, vocab_size
print('will use', device)

def get_params():
    def _one(shape):
        ts = torch.tensor(np.random.normal(0, 0.01, size=shape), device=device, dtype=torch.float32)
        return torch.nn.Parameter(ts, requires_grad=True)
    def _three():
        return (_one((num_inputs, num_hiddens)),
                _one((num_hiddens, num_hiddens)),
                torch.nn.Parameter(torch.zeros(num_hiddens, device=device, dtype=torch.float32), requires_grad=True))
    
    W_xi, W_hi, b_i = _three()  # 输入门参数
    W_xf, W_hf, b_f = _three()  # 遗忘门参数
    W_xo, W_ho, b_o = _three()  # 输出门参数
    W_xc, W_hc, b_c = _three()  # 候选记忆细胞参数
    
    # 输出层参数
    W_hq = _one((num_hiddens, num_outputs))
    b_q = torch.nn.Parameter(torch.zeros(num_outputs, device=device, dtype=torch.float32), requires_grad=True)
    return nn.ParameterList([W_xi, W_hi, b_i, W_xf, W_hf, b_f, W_xo, W_ho, b_o, W_xc, W_hc, b_c, W_hq, b_q])

def init_lstm_state(batch_size, num_hiddens, device):
    return (torch.zeros((batch_size, num_hiddens), device=device), 
            torch.zeros((batch_size, num_hiddens), device=device))

LSTM模型

def lstm(inputs, state, params):
    [W_xi, W_hi, b_i, W_xf, W_hf, b_f, W_xo, W_ho, b_o, W_xc, W_hc, b_c, W_hq, b_q] = params
    (H, C) = state
    outputs = []
    for X in inputs:
        I = torch.sigmoid(torch.matmul(X, W_xi) + torch.matmul(H, W_hi) + b_i)
        F = torch.sigmoid(torch.matmul(X, W_xf) + torch.matmul(H, W_hf) + b_f)
        O = torch.sigmoid(torch.matmul(X, W_xo) + torch.matmul(H, W_ho) + b_o)
        C_tilda = torch.tanh(torch.matmul(X, W_xc) + torch.matmul(H, W_hc) + b_c)
        C = F * C + I * C_tilda
        H = O * C.tanh()
        Y = torch.matmul(H, W_hq) + b_q
        outputs.append(Y)
    return outputs, (H, C)

训练模型

num_epochs, num_steps, batch_size, lr, clipping_theta = 160, 35, 32, 1e2, 1e-2
pred_period, pred_len, prefixes = 40, 50, ['分开', '不分开']

d2l.train_and_predict_rnn(lstm, get_params, init_lstm_state, num_hiddens,
                          vocab_size, device, corpus_indices, idx_to_char,
                          char_to_idx, False, num_epochs, num_steps, lr,
                          clipping_theta, batch_size, pred_period, pred_len,
                          prefixes)

简洁实现

num_hiddens=256
num_epochs, num_steps, batch_size, lr, clipping_theta = 160, 35, 32, 1e2, 1e-2
pred_period, pred_len, prefixes = 40, 50, ['分开', '不分开']

lr = 1e-2 # 注意调整学习率
lstm_layer = nn.LSTM(input_size=vocab_size, hidden_size=num_hiddens)
model = d2l.RNNModel(lstm_layer, vocab_size)
d2l.train_and_predict_rnn_pytorch(model, num_hiddens, vocab_size, device,
                                corpus_indices, idx_to_char, char_to_idx,
                                num_epochs, num_steps, lr, clipping_theta,
                                batch_size, pred_period, pred_len, prefixes)

深度循环神经网络

新的循环神经网络——LSTM与GRU_第4张图片

H t ( 1 ) = ϕ ( X t W x h ( 1 ) + H t − 1 ( 1 ) W h h ( 1 ) + b h ( 1 ) ) H t ( ℓ ) = ϕ ( H t ( ℓ − 1 ) W x h ( ℓ ) + H t − 1 ( ℓ ) W h h ( ℓ ) + b h ( ℓ ) ) O t = H t ( L ) W h q + b q \boldsymbol{H}_t^{(1)} = \phi(\boldsymbol{X}_t \boldsymbol{W}_{xh}^{(1)} + \boldsymbol{H}_{t-1}^{(1)} \boldsymbol{W}_{hh}^{(1)} + \boldsymbol{b}_h^{(1)})\\ \boldsymbol{H}_t^{(\ell)} = \phi(\boldsymbol{H}_t^{(\ell-1)} \boldsymbol{W}_{xh}^{(\ell)} + \boldsymbol{H}_{t-1}^{(\ell)} \boldsymbol{W}_{hh}^{(\ell)} + \boldsymbol{b}_h^{(\ell)})\\ \boldsymbol{O}_t = \boldsymbol{H}_t^{(L)} \boldsymbol{W}_{hq} + \boldsymbol{b}_q Ht(1)=ϕ(XtWxh(1)+Ht1(1)Whh(1)+bh(1))Ht()=ϕ(Ht(1)Wxh()+Ht1()Whh()+bh())Ot=Ht(L)Whq+bq

num_hiddens=256
num_epochs, num_steps, batch_size, lr, clipping_theta = 160, 35, 32, 1e2, 1e-2
pred_period, pred_len, prefixes = 40, 50, ['分开', '不分开']

lr = 1e-2 # 注意调整学习率

gru_layer = nn.LSTM(input_size=vocab_size, hidden_size=num_hiddens,num_layers=2)
model = d2l.RNNModel(gru_layer, vocab_size).to(device)
d2l.train_and_predict_rnn_pytorch(model, num_hiddens, vocab_size, device,
                                corpus_indices, idx_to_char, char_to_idx,
                                num_epochs, num_steps, lr, clipping_theta,
                                batch_size, pred_period, pred_len, prefixes)

双向循环神经网络

新的循环神经网络——LSTM与GRU_第5张图片

H → t = ϕ ( X t W x h ( f ) + H → t − 1 W h h ( f ) + b h ( f ) ) H ← t = ϕ ( X t W x h ( b ) + H ← t + 1 W h h ( b ) + b h ( b ) ) \begin{aligned} \overrightarrow{\boldsymbol{H}}_t &= \phi(\boldsymbol{X}_t \boldsymbol{W}_{xh}^{(f)} + \overrightarrow{\boldsymbol{H}}_{t-1} \boldsymbol{W}_{hh}^{(f)} + \boldsymbol{b}_h^{(f)})\\ \overleftarrow{\boldsymbol{H}}_t &= \phi(\boldsymbol{X}_t \boldsymbol{W}_{xh}^{(b)} + \overleftarrow{\boldsymbol{H}}_{t+1} \boldsymbol{W}_{hh}^{(b)} + \boldsymbol{b}_h^{(b)}) \end{aligned} H tH t=ϕ(XtWxh(f)+H t1Whh(f)+bh(f))=ϕ(XtWxh(b)+H t+1Whh(b)+bh(b))
H t = ( H → t , H ← t ) \boldsymbol{H}_t=(\overrightarrow{\boldsymbol{H}}_{t}, \overleftarrow{\boldsymbol{H}}_t) Ht=(H t,H t)
O t = H t W h q + b q \boldsymbol{O}_t = \boldsymbol{H}_t \boldsymbol{W}_{hq} + \boldsymbol{b}_q Ot=HtWhq+bq

num_hiddens=128
num_epochs, num_steps, batch_size, lr, clipping_theta = 160, 35, 32, 1e-2, 1e-2
pred_period, pred_len, prefixes = 40, 50, ['分开', '不分开']

lr = 1e-2 # 注意调整学习率

gru_layer = nn.GRU(input_size=vocab_size, hidden_size=num_hiddens,bidirectional=True)
model = d2l.RNNModel(gru_layer, vocab_size).to(device)
d2l.train_and_predict_rnn_pytorch(model, num_hiddens, vocab_size, device,
                                corpus_indices, idx_to_char, char_to_idx,
                                num_epochs, num_steps, lr, clipping_theta,
                                batch_size, pred_period, pred_len, prefixes)

你可能感兴趣的:(机器学习,神经网络,深度学习,python)