莫烦大神的pytorch教程,406-GAN,在torch 1.5版本上运行会报错的解决方法

莫烦大神的pytorch教程,406-GAN,在torch 1.5版本上运行会报错

RuntimeError: one of the variables needed for gradient computation has been modified by an inplace operation: [torch.FloatTensor [128, 1]], which is output 0 of TBackward, is at version 2; expected version 1 instead. Hint: enable anomaly detection to find the operation that failed to compute its gradient, with torch.autograd.set_detect_anomaly(True).

修改后的代码

"""
View more, visit my tutorial page: https://morvanzhou.github.io/tutorials/
My Youtube Channel: https://www.youtube.com/user/MorvanZhou

Dependencies:
torch: 0.4
numpy
matplotlib
"""
import torch
import torch.nn as nn
import numpy as np
import matplotlib.pyplot as plt

# torch.manual_seed(1)    # reproducible
# np.random.seed(1)

# Hyper Parameters
BATCH_SIZE = 64
LR_G = 0.0001  # learning rate for generator
LR_D = 0.0001  # learning rate for discriminator
N_IDEAS = 5  # think of this as number of ideas for generating an art work (Generator)
ART_COMPONENTS = 15  # it could be total point G can draw in the canvas
PAINT_POINTS = np.vstack([np.linspace(-1, 1, ART_COMPONENTS) for _ in range(BATCH_SIZE)])


# show our beautiful painting range
# plt.plot(PAINT_POINTS[0], 2 * np.power(PAINT_POINTS[0], 2) + 1, c='#74BCFF', lw=3, label='upper bound')
# plt.plot(PAINT_POINTS[0], 1 * np.power(PAINT_POINTS[0], 2) + 0, c='#FF9359', lw=3, label='lower bound')
# plt.legend(loc='upper right')
# plt.show()


def artist_works():  # painting from the famous artist (real target)
    a = np.random.uniform(1, 2, size=BATCH_SIZE)[:, np.newaxis]
    paintings = a * np.power(PAINT_POINTS, 2) + (a - 1)
    paintings = torch.from_numpy(paintings).float()
    return paintings


G = nn.Sequential(  # Generator
    nn.Linear(N_IDEAS, 128),  # random ideas (could from normal distribution)
    nn.ReLU(),
    nn.Linear(128, ART_COMPONENTS),  # making a painting from these random ideas
)

D = nn.Sequential(  # Discriminator
    nn.Linear(ART_COMPONENTS, 128),  # receive art work either from the famous artist or a newbie like G
    nn.ReLU(),
    nn.Linear(128, 1),
    nn.Sigmoid(),  # tell the probability that the art work is made by artist
)

opt_D = torch.optim.Adam(D.parameters(), lr=LR_D)
opt_G = torch.optim.Adam(G.parameters(), lr=LR_G)

torch.autograd.set_detect_anomaly(True)

plt.ion()  # something about continuous plotting

for step in range(10000):
    artist_paintings = artist_works()  # real painting from artist
    G_ideas = torch.randn(BATCH_SIZE, N_IDEAS)  # random ideas
    G_paintings = G(G_ideas)  # fake painting from G (random ideas)

    prob_artist0 = D(artist_paintings)  # D try to increase this prob
    prob_artist1 = D(G_paintings)  # D try to reduce this prob

    D_loss = - torch.mean(torch.log(prob_artist0) + torch.log(1. - prob_artist1))
    opt_D.zero_grad()
    D_loss.backward(retain_graph=True)  # reusing computational graph
    opt_D.step()

    prob_artist1 = D(G_paintings)  # D try to reduce this prob
    G_loss = torch.mean(torch.log(1. - prob_artist1))
    opt_G.zero_grad()
    G_loss.backward(retain_graph=True)
    opt_G.step()

    if step % 50 == 0:  # plotting
        plt.cla()
        plt.plot(PAINT_POINTS[0], G_paintings.data.numpy()[0], c='#4AD631', lw=3, label='Generated painting', )
        plt.plot(PAINT_POINTS[0], 2 * np.power(PAINT_POINTS[0], 2) + 1, c='#74BCFF', lw=3, label='upper bound')
        plt.plot(PAINT_POINTS[0], 1 * np.power(PAINT_POINTS[0], 2) + 0, c='#FF9359', lw=3, label='lower bound')
        plt.text(-.5, 2.3, 'D accuracy=%.2f (0.5 for D to converge)' % prob_artist0.data.numpy().mean(),
                 fontdict={'size': 13})
        plt.text(-.5, 2, 'D score= %.2f (-1.38 for G to converge)' % -D_loss.data.numpy(), fontdict={'size': 13})
        plt.ylim((0, 3))
        plt.legend(loc='upper right', fontsize=10)
        plt.draw()
        plt.pause(0.01)

plt.ioff()
plt.show()

莫烦大神的pytorch教程,406-GAN,在torch 1.5版本上运行会报错的解决方法_第1张图片

原教程连接 https://mofanpy.com/tutorials/machine-learning/torch/intro-GAN/

 

你可能感兴趣的:(机器学习,python,pytorch)