Proxy 可以实现什么功能?
在 Vue3.0 中通过 Proxy
来替换原本的 Object.defineProperty
来实现数据响应式。
Proxy 是 ES6 中新增的功能,它可以用来自定义对象中的操作。
let p = new Proxy(target, handler)
target
代表需要添加代理的对象,handler
用来自定义对象中的操作,比如可以用来自定义 set
或者 get
函数。
下面来通过 Proxy
来实现一个数据响应式:
let onWatch = (obj, setBind, getLogger) => {
let handler = {
get(target, property, receiver) {
getLogger(target, property)
return Reflect.get(target, property, receiver)
},
set(target, property, value, receiver) {
setBind(value, property)
return Reflect.set(target, property, value)
}
}
return new Proxy(obj, handler)
}
let obj = { a: 1 }
let p = onWatch(
obj,
(v, property) => {
console.log(`监听到属性${property}改变为${v}`)
},
(target, property) => {
console.log(`'${property}' = ${target[property]}`)
}
)
p.a = 2 // 监听到属性a改变
p.a // 'a' = 2
在上述代码中,通过自定义 set
和 get
函数的方式,在原本的逻辑中插入了我们的函数逻辑,实现了在对对象任何属性进行读写时发出通知。
当然这是简单版的响应式实现,如果需要实现一个 Vue 中的响应式,需要在 get
中收集依赖,在 set
派发更新,之所以 Vue3.0 要使用 Proxy
替换原本的 API 原因在于 Proxy
无需一层层递归为每个属性添加代理,一次即可完成以上操作,性能上更好,并且原本的实现有一些数据更新不能监听到,但是 Proxy
可以完美监听到任何方式的数据改变,唯一缺陷就是浏览器的兼容性不好。
script标签中defer和async的区别
如果没有defer或async属性,浏览器会立即加载并执行相应的脚本。它不会等待后续加载的文档元素,读取到就会开始加载和执行,这样就阻塞了后续文档的加载。
defer 和 async属性都是去异步加载外部的JS脚本文件,它们都不会阻塞页面的解析,其区别如下:
- 执行顺序: 多个带async属性的标签,不能保证加载的顺序;多个带defer属性的标签,按照加载顺序执行;
- 脚本是否并行执行:async属性,表示后续文档的加载和执行与js脚本的加载和执行是并行进行的,即异步执行;defer属性,加载后续文档的过程和js脚本的加载(此时仅加载不执行)是并行进行的(异步),js脚本需要等到文档所有元素解析完成之后才执行,DOMContentLoaded事件触发执行之前。
Promise.all
描述:所有 promise
的状态都变成 fulfilled
,就会返回一个状态为 fulfilled
的数组(所有promise
的 value
)。只要有一个失败,就返回第一个状态为 rejected
的 promise
实例的 reason
。
实现:
Promise.all = function(promises) {
return new Promise((resolve, reject) => {
if(Array.isArray(promises)) {
if(promises.length === 0) return resolve(promises);
let result = [];
let count = 0;
promises.forEach((item, index) => {
Promise.resolve(item).then(
value => {
count++;
result[index] = value;
if(count === promises.length) resolve(result);
},
reason => reject(reason)
);
})
}
else return reject(new TypeError("Argument is not iterable"));
});
}
ES6新特性
1.ES6引入来严格模式
变量必须声明后在使用
函数的参数不能有同名属性, 否则报错
不能使用with语句 (说实话我基本没用过)
不能对只读属性赋值, 否则报错
不能使用前缀0表示八进制数,否则报错 (说实话我基本没用过)
不能删除不可删除的数据, 否则报错
不能删除变量delete prop, 会报错, 只能删除属性delete global[prop]
eval不会在它的外层作用域引入变量
eval和arguments不能被重新赋值
arguments不会自动反映函数参数的变化
不能使用arguments.caller (说实话我基本没用过)
不能使用arguments.callee (说实话我基本没用过)
禁止this指向全局对象
不能使用fn.caller和fn.arguments获取函数调用的堆栈 (说实话我基本没用过)
增加了保留字(比如protected、static和interface)
2.关于let和const新增的变量声明
3.变量的解构赋值
4.字符串的扩展
includes():返回布尔值,表示是否找到了参数字符串。
startsWith():返回布尔值,表示参数字符串是否在原字符串的头部。
endsWith():返回布尔值,表示参数字符串是否在原字符串的尾部。
5.数值的扩展
Number.isFinite()用来检查一个数值是否为有限的(finite)。
Number.isNaN()用来检查一个值是否为NaN。
6.函数的扩展
函数参数指定默认值
7.数组的扩展
扩展运算符
8.对象的扩展
对象的解构
9.新增symbol数据类型
10.Set 和 Map 数据结构
ES6 提供了新的数据结构 Set。它类似于数组,但是成员的值都是唯一的,没有重复的值。 Set 本身是一个构造函数,用来生成 Set 数据结构。
Map它类似于对象,也是键值对的集合,但是“键”的范围不限于字符串,各种类型的值(包括对象)都可以当作键。
11.Proxy
Proxy 可以理解成,在目标对象之前架设一层“拦截”,外界对该对象的访问
都必须先通过这层拦截,因此提供了一种机制,可以对外界的访问进行过滤和改写。
Proxy 这个词的原意是代理,用在这里表示由它来“代理”某些操作,可以译为“代理器”。
Vue3.0使用了proxy
12.Promise
Promise 是异步编程的一种解决方案,比传统的解决方案——回调函数和事件——更合理和更强大。
特点是:
对象的状态不受外界影响。
一旦状态改变,就不会再变,任何时候都可以得到这个结果。
13.async 函数
async函数对 Generator 函数的区别:
(1)内置执行器。
Generator 函数的执行必须靠执行器,而async函数自带执行器。也就是说,async函数的执行,与普通函数一模一样,只要一行。
(2)更好的语义。
async和await,比起星号和yield,语义更清楚了。async表示函数里有异步操作,await表示紧跟在后面的表达式需要等待结果。
(3)正常情况下,await命令后面是一个 Promise 对象。如果不是,会被转成一个立即resolve的 Promise 对象。
(4)返回值是 Promise。
async函数的返回值是 Promise 对象,这比 Generator 函数的返回值是 Iterator 对象方便多了。你可以用then方法指定下一步的操作。
14.Class
class跟let、const一样:不存在变量提升、不能重复声明...
ES6 的class可以看作只是一个语法糖,它的绝大部分功能
ES5 都可以做到,新的class写法只是让对象原型的写法更加清晰、更像面向对象编程的语法而已。
15.Module
ES6 的模块自动采用严格模式,不管你有没有在模块头部加上"use strict";。
import和export命令以及export和export default的区别
偏函数
什么是偏函数?偏函数就是将一个 n 参的函数转换成固定 x 参的函数,剩余参数(n - x)将在下次调用全部传入。举个例子:
function add(a, b, c) {
return a + b + c
}
let partialAdd = partial(add, 1)
partialAdd(2, 3)
发现没有,其实偏函数和函数柯里化有点像,所以根据函数柯里化的实现,能够能很快写出偏函数的实现:
function partial(fn, ...args) {
return (...arg) => {
return fn(...args, ...arg)
}
}
如上这个功能比较简单,现在我们希望偏函数能和柯里化一样能实现占位功能,比如:
function clg(a, b, c) {
console.log(a, b, c)
}
let partialClg = partial(clg, '_', 2)
partialClg(1, 3) // 依次打印:1, 2, 3
_
占的位其实就是 1 的位置。相当于:partial(clg, 1, 2),然后 partialClg(3)。明白了原理,我们就来写实现:
function partial(fn, ...args) {
return (...arg) => {
args[index] =
return fn(...args, ...arg)
}
}
数组扁平化
ES5 递归写法 —— isArray()、concat()
function flat11(arr) {
var res = [];
for (var i = 0; i < arr.length; i++) {
if (Array.isArray(arr[i])) {
res = res.concat(flat11(arr[i]));
} else {
res.push(arr[i]);
}
}
return res;
}
如果想实现第二个参数(指定“拉平”的层数),可以这样实现,后面的几种可以自己类似实现:
function flat(arr, level = 1) {
var res = [];
for(var i = 0; i < arr.length; i++) {
if(Array.isArray(arr[i]) || level >= 1) {
res = res.concat(flat(arr[i]), level - 1);
}
else {
res.push(arr[i]);
}
}
return res;
}
ES6 递归写法 — reduce()、concat()、isArray()
function flat(arr) {
return arr.reduce(
(pre, cur) => pre.concat(Array.isArray(cur) ? flat(cur) : cur), []
);
}
ES6 迭代写法 — 扩展运算符(...)、some()、concat()、isArray()
ES6 的扩展运算符(...) 只能扁平化一层
function flat(arr) {
return [].concat(...arr);
}
全部扁平化:遍历原数组,若arr
中含有数组则使用一次扩展运算符,直至没有为止。
function flat(arr) {
while(arr.some(item => Array.isArray(item))) {
arr = [].concat(...arr);
}
return arr;
}
toString/join & split
调用数组的 toString()/join()
方法(它会自动扁平化处理),将数组变为字符串然后再用 split
分割还原为数组。由于 split
分割后形成的数组的每一项值为字符串,所以需要用一个map
方法遍历数组将其每一项转换为数值型。
function flat(arr){
return arr.toString().split(',').map(item => Number(item));
// return arr.join().split(',').map(item => Number(item));
}
使用正则
JSON.stringify(arr).replace(/[|]/g, '')
会先将数组arr
序列化为字符串,然后使用 replace()
方法将字符串中所有的[
或 ]
替换成空字符,从而达到扁平化处理,此时的结果为 arr
不包含 []
的字符串。最后通过JSON.parse()
解析字符串。
function flat(arr) {
return JSON.parse("[" + JSON.stringify(arr).replace(/\[|\]/g,'') + "]");
}
类数组转化为数组
类数组是具有 length
属性,但不具有数组原型上的方法。常见的类数组有 arguments
、DOM 操作方法返回的结果(如document.querySelectorAll('div')
)等。
扩展运算符(...)
注意:扩展运算符只能作用于 iterable
对象,即拥有 Symbol(Symbol.iterator)
属性值。
let arr = [...arrayLike]
Array.from()
let arr = Array.from(arrayLike);
Array.prototype.slice.call()
let arr = Array.prototype.slice.call(arrayLike);
Array.apply()
let arr = Array.apply(null, arrayLike);
concat + apply
let arr = Array.prototype.concat.apply([], arrayLike);
参考 前端进阶面试题详细解答
代码输出结果
console.log('1');
setTimeout(function() {
console.log('2');
process.nextTick(function() {
console.log('3');
})
new Promise(function(resolve) {
console.log('4');
resolve();
}).then(function() {
console.log('5')
})
})
process.nextTick(function() {
console.log('6');
})
new Promise(function(resolve) {
console.log('7');
resolve();
}).then(function() {
console.log('8')
})
setTimeout(function() {
console.log('9');
process.nextTick(function() {
console.log('10');
})
new Promise(function(resolve) {
console.log('11');
resolve();
}).then(function() {
console.log('12')
})
})
输出结果如下:
1
7
6
8
2
4
3
5
9
11
10
12
(1)第一轮事件循环流程分析如下:
- 整体script作为第一个宏任务进入主线程,遇到
console.log
,输出1。 - 遇到
setTimeout
,其回调函数被分发到宏任务Event Queue中。暂且记为setTimeout1
。 - 遇到
process.nextTick()
,其回调函数被分发到微任务Event Queue中。记为process1
。 - 遇到
Promise
,new Promise
直接执行,输出7。then
被分发到微任务Event Queue中。记为then1
。 - 又遇到了
setTimeout
,其回调函数被分发到宏任务Event Queue中,记为setTimeout2
。
宏任务Event Queue | 微任务Event Queue |
---|---|
setTimeout1 | process1 |
setTimeout2 | then1 |
上表是第一轮事件循环宏任务结束时各Event Queue的情况,此时已经输出了1和7。发现了process1
和then1
两个微任务:
- 执行
process1
,输出6。 - 执行
then1
,输出8。
第一轮事件循环正式结束,这一轮的结果是输出1,7,6,8。
(2)第二轮时间循环从**setTimeout1**
宏任务开始:
- 首先输出2。接下来遇到了
process.nextTick()
,同样将其分发到微任务Event Queue中,记为process2
。 new Promise
立即执行输出4,then
也分发到微任务Event Queue中,记为then2
。
宏任务Event Queue | 微任务Event Queue |
---|---|
setTimeout2 | process2 |
then2 |
第二轮事件循环宏任务结束,发现有process2
和then2
两个微任务可以执行:
- 输出3。
- 输出5。
第二轮事件循环结束,第二轮输出2,4,3,5。
(3)第三轮事件循环开始,此时只剩setTimeout2了,执行。
- 直接输出9。
- 将
process.nextTick()
分发到微任务Event Queue中。记为process3
。 - 直接执行
new Promise
,输出11。 - 将
then
分发到微任务Event Queue中,记为then3
。
宏任务Event Queue | 微任务Event Queue |
---|---|
process3 | |
then3 |
第三轮事件循环宏任务执行结束,执行两个微任务process3
和then3
:
- 输出10。
- 输出12。
第三轮事件循环结束,第三轮输出9,11,10,12。
整段代码,共进行了三次事件循环,完整的输出为1,7,6,8,2,4,3,5,9,11,10,12。
说一下原型链和原型链的继承吧
- 所有普通的 [[Prototype]] 链最终都会指向内置的 Object.prototype,其包含了 JavaScript 中许多通用的功能
- 为什么能创建 “类”,借助一种特殊的属性:所有的函数默认都会拥有一个名为 prototype 的共有且不可枚举的属性,它会指向另外一个对象,这个对象通常被称为函数的原型
function Person(name) {
this.name = name;
}
Person.prototype.constructor = Person
- 在发生 new 构造函数调用时,会将创建的新对象的 [[Prototype]] 链接到 Person.prototype 指向的对象,这个机制就被称为原型链继承
- 方法定义在原型上,属性定义在构造函数上
- 首先要说一下 JS 原型和实例的关系:每个构造函数 (constructor)都有一个原型对象(prototype),这个原型对象包含一个指向此构造函数的指针属性,通过 new 进行构造函数调用生成的实例,此实例包含一个指向原型对象的指针,也就是通过 [[Prototype]] 链接到了这个原型对象
- 然后说一下 JS 中属性的查找:当我们试图引用实例对象的某个属性时,是按照这样的方式去查找的,首先查找实例对象上是否有这个属性,如果没有找到,就去构造这个实例对象的构造函数的 prototype 所指向的对象上去查找,如果还找不到,就从这个 prototype 对象所指向的构造函数的 prototype 原型对象上去查找
- 什么是原型链:这样逐级查找形似一个链条,且通过 [[Prototype]] 属性链接,所以被称为原型链
- 什么是原型链继承,类比类的继承:当有两个构造函数 A 和 B,将一个构造函数 A 的原型对象的,通过其 [[Prototype]] 属性链接到另外一个 B 构造函数的原型对象时,这个过程被称之为原型继承。
标准答案更正确的解释
什么是原型链?
当对象查找一个属性的时候,如果没有在自身找到,那么就会查找自身的原型,如果原型还没有找到,那么会继续查找原型的原型,直到找到 Object.prototype 的原型时,此时原型为 null,查找停止。
这种通过 通过原型链接的逐级向上的查找链被称为原型链
什么是原型继承?
一个对象可以使用另外一个对象的属性或者方法,就称之为继承。具体是通过将这个对象的原型设置为另外一个对象,这样根据原型链的规则,如果查找一个对象属性且在自身不存在时,就会查找另外一个对象,相当于一个对象可以使用另外一个对象的属性和方法了。
手写题:Promise 原理
class MyPromise {
constructor(fn) {
this.callbacks = [];
this.state = "PENDING";
this.value = null;
fn(this._resolve.bind(this), this._reject.bind(this));
}
then(onFulfilled, onRejected) {
return new MyPromise((resolve, reject) =>
this._handle({
onFulfilled: onFulfilled || null,
onRejected: onRejected || null,
resolve,
reject,
})
);
}
catch(onRejected) {
return this.then(null, onRejected);
}
_handle(callback) {
if (this.state === "PENDING") {
this.callbacks.push(callback);
return;
}
let cb =
this.state === "FULFILLED" ? callback.onFulfilled : callback.onRejected;
if (!cb) {
cb = this.state === "FULFILLED" ? callback.resolve : callback.reject;
cb(this.value);
return;
}
let ret;
try {
ret = cb(this.value);
cb = this.state === "FULFILLED" ? callback.resolve : callback.reject;
} catch (error) {
ret = error;
cb = callback.reject;
} finally {
cb(ret);
}
}
_resolve(value) {
if (value && (typeof value === "object" || typeof value === "function")) {
let then = value.then;
if (typeof then === "function") {
then.call(value, this._resolve.bind(this), this._reject.bind(this));
return;
}
}
this.state === "FULFILLED";
this.value = value;
this.callbacks.forEach((fn) => this._handle(fn));
}
_reject(error) {
this.state === "REJECTED";
this.value = error;
this.callbacks.forEach((fn) => this._handle(fn));
}
}
const p1 = new Promise(function (resolve, reject) {
setTimeout(() => reject(new Error("fail")), 3000);
});
const p2 = new Promise(function (resolve, reject) {
setTimeout(() => resolve(p1), 1000);
});
p2.then((result) => console.log(result)).catch((error) => console.log(error));
代码输出结果
var myObject = {
foo: "bar",
func: function() {
var self = this;
console.log(this.foo);
console.log(self.foo);
(function() {
console.log(this.foo);
console.log(self.foo);
}());
}
};
myObject.func();
输出结果:bar bar undefined bar
解析:
- 首先func是由myObject调用的,this指向myObject。又因为var self = this;所以self指向myObject。
- 这个立即执行匿名函数表达式是由window调用的,this指向window 。立即执行匿名函数的作用域处于myObject.func的作用域中,在这个作用域找不到self变量,沿着作用域链向上查找self变量,找到了指向 myObject对象的self。
setInterval 模拟 setTimeout
描述:使用setInterval
模拟实现setTimeout
的功能。
思路:setTimeout
的特性是在指定的时间内只执行一次,我们只要在setInterval
内部执行 callback
之后,把定时器关掉即可。
实现:
const mySetTimeout = (fn, time) => {
let timer = null;
timer = setInterval(() => {
// 关闭定时器,保证只执行一次fn,也就达到了setTimeout的效果了
clearInterval(timer);
fn();
}, time);
// 返回用于关闭定时器的方法
return () => clearInterval(timer);
}
// 测试
const cancel = mySetTimeout(() => {
console.log(1);
}, 1000);
// 一秒后打印 1
为什么0.1+0.2 ! == 0.3,如何让其相等
在开发过程中遇到类似这样的问题:
let n1 = 0.1, n2 = 0.2
console.log(n1 + n2) // 0.30000000000000004
这里得到的不是想要的结果,要想等于0.3,就要把它进行转化:
(n1 + n2).toFixed(2) // 注意,toFixed为四舍五入
toFixed(num)
方法可把 Number 四舍五入为指定小数位数的数字。那为什么会出现这样的结果呢?
计算机是通过二进制的方式存储数据的,所以计算机计算0.1+0.2的时候,实际上是计算的两个数的二进制的和。0.1的二进制是0.0001100110011001100...
(1100循环),0.2的二进制是:0.00110011001100...
(1100循环),这两个数的二进制都是无限循环的数。那JavaScript是如何处理无限循环的二进制小数呢?
一般我们认为数字包括整数和小数,但是在 JavaScript 中只有一种数字类型:Number,它的实现遵循IEEE 754标准,使用64位固定长度来表示,也就是标准的double双精度浮点数。在二进制科学表示法中,双精度浮点数的小数部分最多只能保留52位,再加上前面的1,其实就是保留53位有效数字,剩余的需要舍去,遵从“0舍1入”的原则。
根据这个原则,0.1和0.2的二进制数相加,再转化为十进制数就是:0.30000000000000004
。
下面看一下双精度数是如何保存的:
- 第一部分(蓝色):用来存储符号位(sign),用来区分正负数,0表示正数,占用1位
- 第二部分(绿色):用来存储指数(exponent),占用11位
- 第三部分(红色):用来存储小数(fraction),占用52位
对于0.1,它的二进制为:
0.00011001100110011001100110011001100110011001100110011001 10011...
转为科学计数法(科学计数法的结果就是浮点数):
1.1001100110011001100110011001100110011001100110011001*2^-4
可以看出0.1的符号位为0,指数位为-4,小数位为:
1001100110011001100110011001100110011001100110011001
那么问题又来了,指数位是负数,该如何保存呢?
IEEE标准规定了一个偏移量,对于指数部分,每次都加这个偏移量进行保存,这样即使指数是负数,那么加上这个偏移量也就是正数了。由于JavaScript的数字是双精度数,这里就以双精度数为例,它的指数部分为11位,能表示的范围就是0~2047,IEEE固定双精度数的偏移量为1023。
- 当指数位不全是0也不全是1时(规格化的数值),IEEE规定,阶码计算公式为 e-Bias。 此时e最小值是1,则1-1023= -1022,e最大值是2046,则2046-1023=1023,可以看到,这种情况下取值范围是
-1022~1013
。 - 当指数位全部是0的时候(非规格化的数值),IEEE规定,阶码的计算公式为1-Bias,即1-1023= -1022。
- 当指数位全部是1的时候(特殊值),IEEE规定这个浮点数可用来表示3个特殊值,分别是正无穷,负无穷,NaN。 具体的,小数位不为0的时候表示NaN;小数位为0时,当符号位s=0时表示正无穷,s=1时候表示负无穷。
对于上面的0.1的指数位为-4,-4+1023 = 1019 转化为二进制就是:1111111011
.
所以,0.1表示为:
0 1111111011 1001100110011001100110011001100110011001100110011001
说了这么多,是时候该最开始的问题了,如何实现0.1+0.2=0.3呢?
对于这个问题,一个直接的解决方法就是设置一个误差范围,通常称为“机器精度”。对JavaScript来说,这个值通常为2-52,在ES6中,提供了Number.EPSILON
属性,而它的值就是2-52,只要判断0.1+0.2-0.3
是否小于Number.EPSILON
,如果小于,就可以判断为0.1+0.2 ===0.3
function numberepsilon(arg1,arg2){
return Math.abs(arg1 - arg2) < Number.EPSILON;
}
console.log(numberepsilon(0.1 + 0.2, 0.3)); // true
代码输出结果
function fn1(){
console.log('fn1')
}
var fn2
fn1()
fn2()
fn2 = function() {
console.log('fn2')
}
fn2()
输出结果:
fn1
Uncaught TypeError: fn2 is not a function
fn2
这里也是在考察变量提升,关键在于第一个fn2(),这时fn2仍是一个undefined的变量,所以会报错fn2不是一个函数。
setTimeout 模拟 setInterval
描述:使用setTimeout
模拟实现setInterval
的功能。
实现:
const mySetInterval(fn, time) {
let timer = null;
const interval = () => {
timer = setTimeout(() => {
fn(); // time 时间之后会执行真正的函数fn
interval(); // 同时再次调用interval本身
}, time)
}
interval(); // 开始执行
// 返回用于关闭定时器的函数
return () => clearTimeout(timer);
}
// 测试
const cancel = mySetInterval(() => console.log(1), 400);
setTimeout(() => {
cancel();
}, 1000);
// 打印两次1
代码输出结果
function foo() {
console.log( this.a );
}
function doFoo() {
foo();
}
var obj = {
a: 1,
doFoo: doFoo
};
var a = 2;
obj.doFoo()
输出结果:2
在Javascript中,this指向函数执行时的当前对象。在执行foo的时候,执行环境就是doFoo函数,执行环境为全局。所以,foo中的this是指向window的,所以会打印出2。
代码输出结果
function runAsync (x) {
const p = new Promise(r => setTimeout(() => r(x, console.log(x)), 1000))
return p
}
Promise.race([runAsync(1), runAsync(2), runAsync(3)])
.then(res => console.log('result: ', res))
.catch(err => console.log(err))
输出结果如下:
1
'result: ' 1
2
3
then只会捕获第一个成功的方法,其他的函数虽然还会继续执行,但是不是被then捕获了。
单行、多行文本溢出隐藏
- 单行文本溢出
overflow: hidden; // 溢出隐藏
text-overflow: ellipsis; // 溢出用省略号显示
white-space: nowrap; // 规定段落中的文本不进行换行
- 多行文本溢出
overflow: hidden; // 溢出隐藏
text-overflow: ellipsis; // 溢出用省略号显示
display:-webkit-box; // 作为弹性伸缩盒子模型显示。
-webkit-box-orient:vertical; // 设置伸缩盒子的子元素排列方式:从上到下垂直排列
-webkit-line-clamp:3; // 显示的行数
注意:由于上面的三个属性都是 CSS3 的属性,没有浏览器可以兼容,所以要在前面加一个-webkit-
来兼容一部分浏览器。
如何解释 React 的渲染流程
- React 的渲染过程大致一致,但协调并不相同,以
React 16
为分界线,分为Stack Reconciler
和Fiber Reconciler
。这里的协调从狭义上来讲,特指 React 的 diff 算法,广义上来讲,有时候也指 React 的reconciler
模块,它通常包含了diff
算法和一些公共逻辑。 - 回到
Stack Reconciler
中,Stack Reconciler
的核心调度方式是递归
。调度的基本处理单位是事务
,它的事务基类是Transaction
,这里的事务是 React 团队从后端开发中加入的概念
。在 React 16 以前,挂载主要通过 ReactMount 模块完成
,更新通过ReactUpdate
模块完成,模块之间相互分离,落脚执行点也是事务。 - 在
React 16
及以后,协调改为了Fiber Reconciler
。它的调度方式主要有两个特点,第一个是协作式多任务模式
,在这个模式下,线程会定时放弃自己的运行权利,交还给主线程,通过requestIdleCallback
实现。第二个特点是策略优先级
,调度任务通过标记tag
的方式分优先级执行,比如动画,或者标记为high
的任务可以优先执行。Fiber Reconciler
的基本单位是Fiber
,Fiber
基于过去的React Element
提供了二次封装,提供了指向父、子、兄弟节点的引用,为diff
工作的双链表实现提供了基础。 - 在新的架构下,整个生命周期被划分为
Render 和 Commit 两个阶段
。Render 阶段的执行特点是可中断、可停止、无副作用
,主要是通过构造workInProgress
树计算出diff
。以current
树为基础,将每个Fiber
作为一个基本单位,自下而上逐个节点检查并构造 workInProgress 树。这个过程不再是递归,而是基于循环来完成 - 在执行上通过
requestIdleCallback
来调度执行每组任务,每组中的每个计算任务被称为work
,每个work
完成后确认是否有优先级更高的work
需要插入,如果有就让位,没有就继续。优先级通常是标记为动画或者high
的会先处理。每完成一组后,将调度权交回主线程,直到下一次requestIdleCallback
调用,再继续构建workInProgress
树 - 在
commit
阶段需要处理effect
列表,这里的effect
列表包含了根据diff 更新 DOM 树
、回调生命周期
、响应 ref
等。 - 但一定要注意,这个阶段是同步执行的,不可中断暂停,所以不要在
componentDidMount
、componentDidUpdate
、componentWiilUnmount
中去执行重度消耗算力的任务 - 如果只是一般的应用场景,比如管理后台、H5 展示页等,两者性能差距并不大,但在动画、画布及手势等场景下,
Stack Reconciler
的设计会占用占主线程,造成卡顿,而fiber reconciler
的设计则能带来高性能的表现
水平垂直居中的实现
- 利用绝对定位,先将元素的左上角通过top:50%和left:50%定位到页面的中心,然后再通过translate来调整元素的中心点到页面的中心。该方法需要考虑浏览器兼容问题。
.parent { position: relative;} .child { position: absolute; left: 50%; top: 50%; transform: translate(-50%,-50%);}
- 利用绝对定位,设置四个方向的值都为0,并将margin设置为auto,由于宽高固定,因此对应方向实现平分,可以实现水平和垂直方向上的居中。该方法适用于盒子有宽高的情况:
.parent {
position: relative;
}
.child {
position: absolute;
top: 0;
bottom: 0;
left: 0;
right: 0;
margin: auto;
}
- 利用绝对定位,先将元素的左上角通过top:50%和left:50%定位到页面的中心,然后再通过margin负值来调整元素的中心点到页面的中心。该方法适用于盒子宽高已知的情况
.parent {
position: relative;
}
.child {
position: absolute;
top: 50%;
left: 50%;
margin-top: -50px; /* 自身 height 的一半 */
margin-left: -50px; /* 自身 width 的一半 */
}
- 使用flex布局,通过align-items:center和justify-content:center设置容器的垂直和水平方向上为居中对齐,然后它的子元素也可以实现垂直和水平的居中。该方法要考虑兼容的问题,该方法在移动端用的较多:
.parent {
display: flex;
justify-content:center;
align-items:center;
}
代码输出结果
function Person(name) {
this.name = name
}
var p2 = new Person('king');
console.log(p2.__proto__) //Person.prototype
console.log(p2.__proto__.__proto__) //Object.prototype
console.log(p2.__proto__.__proto__.__proto__) // null
console.log(p2.__proto__.__proto__.__proto__.__proto__)//null后面没有了,报错
console.log(p2.__proto__.__proto__.__proto__.__proto__.__proto__)//null后面没有了,报错
console.log(p2.constructor)//Person
console.log(p2.prototype)//undefined p2是实例,没有prototype属性
console.log(Person.constructor)//Function 一个空函数
console.log(Person.prototype)//打印出Person.prototype这个对象里所有的方法和属性
console.log(Person.prototype.constructor)//Person
console.log(Person.prototype.__proto__)// Object.prototype
console.log(Person.__proto__) //Function.prototype
console.log(Function.prototype.__proto__)//Object.prototype
console.log(Function.__proto__)//Function.prototype
console.log(Object.__proto__)//Function.prototype
console.log(Object.prototype.__proto__)//null
这道义题目考察原型、原型链的基础,记住就可以了。