1 //大白p263 2 #include <cmath> 3 #include <cstdio> 4 #include <cstring> 5 #include <string> 6 #include <queue> 7 #include <functional> 8 #include <set> 9 #include <iostream> 10 #include <vector> 11 #include <algorithm> 12 using namespace std; 13 const double eps=1e-8;//精度 14 const int INF=0x3f3f3f3f; 15 const double PI=acos(-1.0); 16 inline int dcmp(const double& x){//判断double等于0或。。。 17 if(fabs(x)<eps)return 0;else return x<0?-1:1; 18 } 19 struct Point{ 20 double x,y; 21 Point(){} 22 Point(double x,double y):x(x),y(y){} 23 }; 24 typedef Point Vector; 25 typedef vector<Point> Polygon; 26 inline Vector operator+(const Vector& a,const Vector& b){return Vector(a.x+b.x,a.y+b.y);}//向量+向量=向量 27 inline Vector operator-(const Point& a,const Point& b){return Vector(a.x-b.x,a.y-b.y);}//点-点=向量 28 inline Vector operator*(const Vector& a,const double& p){return Vector(a.x*p,a.y*p);}//向量*实数=向量 29 inline Vector operator/(const Vector& a,const double& p){return Vector(a.x/p,a.y/p);}//向量/实数=向量 30 inline bool operator<( const Point& A,const Point& B ){return dcmp(A.x-B.x)<0||(dcmp(A.x-B.x)==0&&dcmp(A.y-B.y)<0);} 31 inline bool operator==(const Point&a,const Point&b){return dcmp(a.x-b.x)==0&&dcmp(a.y-b.y)==0;} 32 inline bool operator!=(const Point&a,const Point&b){return a==b?false:true;} 33 struct Segment{ 34 Point a,b; 35 Segment(){} 36 Segment(Point _a,Point _b){a=_a,b=_b;} 37 inline bool friend operator<(const Segment& p,const Segment& q){return p.a<q.a||(p.a==q.a&&p.b<q.b);} 38 inline bool friend operator==(const Segment& p,const Segment& q){return (p.a==q.a&&p.b==q.b)||(p.a==q.b&&p.b==q.a);} 39 }; 40 struct Circle{ 41 Point c; 42 double r; 43 Circle(){} 44 Circle(Point _c, double _r):c(_c),r(_r) {} 45 Point point(double a)const{return Point(c.x+cos(a)*r,c.y+sin(a)*r);} 46 bool friend operator<(const Circle& a,const Circle& b){return a.r<b.r;} 47 }; 48 struct Line{ 49 Point p; 50 Vector v; 51 double ang; 52 Line() {} 53 Line(const Point &_p, const Vector &_v):p(_p),v(_v){ang = atan2(v.y, v.x);} 54 inline bool operator<(const Line &L)const{return ang < L.ang;} 55 }; 56 inline double Dot(const Vector& a,const Vector& b){return a.x*b.x+a.y*b.y;}//|a|*|b|*cosθ 点积 57 inline double Length(const Vector& a){return sqrt(Dot(a,a));}//|a| 向量长度 58 inline double Angle(const Vector& a,const Vector& b){return acos(Dot(a,b)/Length(a)/Length(b));}//向量夹角θ 59 inline double Cross(const Vector& a,const Vector& b){return a.x*b.y-a.y*b.x;}//叉积 向量围成的平行四边形的面积 60 inline double Area2(const Point& a,const Point& b,Point c){return Cross(b-a,c-a);}//同上 参数为三个点 61 inline double DegreeToRadius(const double& deg){return deg/180*PI;} 62 inline double GetRerotateAngle(const Vector& a,const Vector& b){//向量a顺时针旋转theta度得到向量b的方向 63 double tempa=Angle(a,Vector(1,0)); 64 if(a.y<0) tempa=2*PI-tempa; 65 double tempb=Angle(b,Vector(1,0)); 66 if(b.y<0) tempb=2*PI-tempb; 67 if((tempa-tempb)>0) return tempa-tempb; 68 else return tempa-tempb+2*PI; 69 } 70 inline double torad(const double& deg){return deg/180*PI;}//角度化为弧度 71 inline Vector Rotate(const Vector& a,const double& rad){//向量逆时针旋转rad弧度 72 return Vector(a.x*cos(rad)-a.y*sin(rad),a.x*sin(rad)+a.y*cos(rad)); 73 } 74 inline Vector Normal(const Vector& a){//计算单位法线 75 double L=Length(a); 76 return Vector(-a.y/L,a.x/L); 77 } 78 inline Point GetLineProjection(const Point& p,const Point& a,const Point& b){//点在直线上的投影 79 Vector v=b-a; 80 return a+v*(Dot(v,p-a)/Dot(v,v)); 81 } 82 inline Point GetLineIntersection(Point p,Vector v,Point q,Vector w){//求直线交点 有唯一交点时可用 83 Vector u=p-q; 84 double t=Cross(w,u)/Cross(v,w); 85 return p+v*t; 86 } 87 int ConvexHull(Point* p,int n,Point* sol){//计算凸包 88 sort(p,p+n); 89 int m=0; 90 for(int i=0;i<n;i++){ 91 while(m>1&&dcmp(Cross(sol[m-1]-sol[m-2],p[i]-sol[m-2]))<=0) m--; 92 sol[m++]=p[i]; 93 } 94 int k=m; 95 for(int i=n-2;i>=0;i--){ 96 while(m>k&&dcmp(Cross(sol[m-1]-sol[m-2],p[i]-sol[m-2]))<=0) m--; 97 sol[m++]=p[i]; 98 } 99 if(n>0) m--; 100 return m; 101 } 102 double Heron(double a,double b,double c){//海伦公式 103 double p=(a+b+c)/2; 104 return sqrt(p*(p-a)*(p-b)*(p-c)); 105 } 106 bool SegmentProperIntersection(const Point& a1,const Point& a2,const Point& b1,const Point& b2){//线段规范相交判定 107 double c1=Cross(a2-a1,b1-a1),c2=Cross(a2-a1,b2-a1); 108 double c3=Cross(b2-b1,a1-b1),c4=Cross(b2-b1,a2-b1); 109 return dcmp(c1)*dcmp(c2)<0&&dcmp(c3)*dcmp(c4)<0; 110 } 111 double CutConvex(const int& n,Point* poly,const Point& a,const Point& b, vector<Point> result[3]){//有向直线a b 切割凸多边形 112 vector<Point> points; 113 Point p; 114 Point p1=a,p2=b; 115 int cur,pre; 116 result[0].clear(); 117 result[1].clear(); 118 result[2].clear(); 119 if(n==0) return 0; 120 double tempcross; 121 tempcross=Cross(p2-p1,poly[0]-p1); 122 if(dcmp(tempcross)==0) pre=cur=2; 123 else if(tempcross>0) pre=cur=0; 124 else pre=cur=1; 125 for(int i=0;i<n;i++){ 126 tempcross=Cross(p2-p1,poly[(i+1)%n]-p1); 127 if(dcmp(tempcross)==0) cur=2; 128 else if(tempcross>0) cur=0; 129 else cur=1; 130 if(cur==pre){ 131 result[cur].push_back(poly[(i+1)%n]); 132 } 133 else{ 134 p1=poly[i]; 135 p2=poly[(i+1)%n]; 136 p=GetLineIntersection(p1,p2-p1,a,b-a); 137 points.push_back(p); 138 result[pre].push_back(p); 139 result[cur].push_back(p); 140 result[cur].push_back(poly[(i+1)%n]); 141 pre=cur; 142 } 143 } 144 sort(points.begin(),points.end()); 145 if(points.size()<2){ 146 return 0; 147 } 148 else{ 149 return Length(points.front()-points.back()); 150 } 151 } 152 double DistanceToSegment(Point p,Segment s){//点到线段的距离 153 if(s.a==s.b) return Length(p-s.a); 154 Vector v1=s.b-s.a,v2=p-s.a,v3=p-s.b; 155 if(dcmp(Dot(v1,v2))<0) return Length(v2); 156 else if(dcmp(Dot(v1,v3))>0) return Length(v3); 157 else return fabs(Cross(v1,v2))/Length(v1); 158 } 159 inline bool isPointOnSegment(const Point& p,const Segment& s){ 160 return dcmp(Cross(s.a-p,s.b-p))==0&&dcmp(Dot(s.a-p,s.b-p))<0; 161 } 162 int isPointInPolygon(Point p, Point* poly,int n){//点与多边形的位置关系 163 int wn=0; 164 for(int i=0;i<n;i++){ 165 Point& p2=poly[(i+1)%n]; 166 if(isPointOnSegment(p,Segment(poly[i],p2))) return -1;//点在边界上 167 int k=dcmp(Cross(p2-poly[i],p-poly[i])); 168 int d1=dcmp(poly[i].y-p.y); 169 int d2=dcmp(p2.y-p.y); 170 if(k>0&&d1<=0&&d2>0)wn++; 171 if(k<0&&d2<=0&&d1>0)wn--; 172 } 173 if(wn) return 1;//点在内部 174 else return 0;//点在外部 175 } 176 double PolygonArea(Point* p,int n){//多边形有向面积 177 double area=0; 178 for(int i=1;i<n-1;i++) 179 area+=Cross(p[i]-p[0],p[i+1]-p[0]); 180 return area/2; 181 } 182 int GetLineCircleIntersection(Line L,Circle C,Point& p1,Point& p2){//圆与直线交点 返回交点个数 183 double a = L.v.x, b = L.p.x - C.c.x, c = L.v.y, d = L.p.y-C.c.y; 184 double e = a*a + c*c, f = 2*(a*b+c*d), g = b*b + d*d -C.r*C.r; 185 double delta = f*f - 4*e*g; 186 if(dcmp(delta) < 0) return 0;//相离 187 if(dcmp(delta) == 0) {//相切 188 p1=p1=L.p+L.v*(-f/(2*e)); 189 return 1; 190 }//相交 191 p1=(L.p+L.v*(-f-sqrt(delta))/(2*e)); 192 p2=(L.p+L.v*(-f+sqrt(delta))/(2*e)); 193 return 2; 194 } 195 double rotating_calipers(Point *ch,int n)//旋转卡壳 196 { 197 int q=1; 198 double ans=0; 199 ch[n]=ch[0]; 200 for(int p=0;p<n;p++) 201 { 202 while(Cross(ch[q+1]-ch[p+1],ch[p]-ch[p+1])>Cross(ch[q]-ch[p+1],ch[p]-ch[p+1])) 203 q=(q+1)%n; 204 ans=max(ans,max(Length(ch[p]-ch[q]),Length(ch[p+1]-ch[q+1]))); 205 } 206 return ans; 207 } 208 Polygon CutPolygon(Polygon poly,const Point& a,const Point& b){//用a->b切割多边形 返回左侧 209 Polygon newpoly; 210 int n=poly.size(); 211 for(int i=0;i<n;i++){ 212 Point c=poly[i]; 213 Point d=poly[(i+1)%n]; 214 if(dcmp(Cross(b-a,c-a))>=0) newpoly.push_back(c); 215 if(dcmp(Cross(b-a,c-d))!=0){ 216 Point ip=GetLineIntersection(a,b-a,c,d-c); 217 if(isPointOnSegment(ip,Segment(c,d))) newpoly.push_back(ip); 218 } 219 } 220 return newpoly; 221 } 222 int GetCircleCircleIntersection(Circle c1,Circle c2,Point& p1,Point& p2){//求两圆相交 223 double d=Length(c1.c-c2.c); 224 if(dcmp(d)==0){ 225 if(dcmp(c1.r-c2.r)==0) return -1;//两圆重合 226 return 0; 227 } 228 if(dcmp(c1.r+c2.r-d)<0) return 0; 229 if(dcmp(fabs(c1.r-c2.r)-d)>0) return 0; 230 double a=Angle(c2.c-c1.c,Vector(1,0)); 231 double da=acos((c1.r*c1.r+d*d-c2.r*c2.r)/(2*c1.r*d)); 232 p1=c1.point(a-da);p2=c1.point(a+da); 233 if(p1==p2) return 1; 234 return 2; 235 } 236 inline bool isPointOnleft(Point p,Line L){return dcmp(Cross(L.v,p-L.p))>0;}//点在直线左边 线上不算 237 int HalfplaneIntersection(Line *L,int n,Point* poly){//半平面交 238 sort(L,L+n); 239 int first,last; 240 Point* p=new Point[n]; 241 Line* q=new Line[n]; 242 q[first=last=0]=L[0]; 243 for(int i=1;i<n;i++){ 244 while(first<last&&!isPointOnleft(p[last-1],L[i])) last--; 245 while(first<last&&!isPointOnleft(p[first],L[i])) first++; 246 q[++last]=L[i]; 247 if(dcmp(Cross(q[last].v,q[last-1].v))==0){ 248 last--; 249 if(isPointOnleft(L[i].p,q[last])) q[last]=L[i]; 250 } 251 if(first<last) p[last-1]=GetLineIntersection(q[last-1].p,q[last-1].v,q[last].p,q[last].v); 252 } 253 while(first<last&&!isPointOnleft(p[last-1],q[first])) last--; 254 if(last-first<=1) return 0; 255 p[last]=GetLineIntersection(q[last].p,q[last].v,q[first].p,q[first].v); 256 int m=0; 257 for(int i=first;i<=last;i++) poly[m++]=p[i]; 258 return m; 259 } 260 //两点式化为一般式A = b.y-a.y, B = a.x-b.x, C = -a.y*(B)-a.x*(A); 261 //-------------------------------------- 262 //-------------------------------------- 263 //-------------------------------------- 264 //-------------------------------------- 265 //-------------------------------------- 266 Point point[444444],ppoint[444444]; 267 int main() 268 { 269 int n,m; 270 while(~scanf("%d%d",&n,&m)) 271 { 272 int tot = 0; 273 double x,y,r; 274 for(int i = 0;i<n;i++) 275 { 276 scanf("%lf%lf%lf",&x,&y,&r); 277 for(double j = 0;j<2*PI;j += 0.0032) 278 { 279 point[tot++] = Point(x+r*cos(j),y+r*sin(j)); 280 } 281 } 282 for(int i = 0;i<m;i++) 283 for(int j = 0;j<3;j++) 284 { 285 scanf("%lf%lf",&x,&y); 286 point[tot++] = Point(x,y); 287 } 288 tot=ConvexHull(point,tot,ppoint); 289 double ans = 0; 290 Point pre = ppoint[0]; 291 for(int i = 1;i<tot;i++) 292 { 293 ans += Length(ppoint[i]-pre); 294 pre = ppoint[i]; 295 } 296 ans += Length(ppoint[0]-pre); 297 printf("%.5f\n",ans); 298 } 299 return 0; 300 }