导数的定义1: \quad f ′ ( x 0 ) = lim Δ x → 0 Δ y Δ x = lim Δ x → 0 f ( x 0 + Δ x ) − f ( x 0 ) Δ x f'(x_0)=\lim\limits_{\Delta x\rightarrow0}\frac{\Delta y}{\Delta x}=\lim\limits_{\Delta x\rightarrow0}\frac{f(x_0+\Delta x)-f(x_0)}{\Delta x} f′(x0)=Δx→0limΔxΔy=Δx→0limΔxf(x0+Δx)−f(x0)
牛顿: 变速直线运动的瞬时速度
速 度 = 路 程 时 间 = 末 位 置 − 初 位 置 时 间 速度=\frac{路程}{时间}=\frac{末位置-初位置}{时间} 速度=时间路程=时间末位置−初位置
而瞬时就是 Δ x → 0 \Delta x\rightarrow0 Δx→0
\quad
例题1: 设 f ( x ) f(x) f(x)可微, 则 lim h → 0 f ( x − 2 h ) − f ( x ) h = \lim\limits_{h\rightarrow0}\frac{f(x-2h)-f(x)}{h}= h→0limhf(x−2h)−f(x)=________
lim − 2 h → 0 f [ x + ( − 2 h ) ] − f ( x ) − 2 h = − 2 f ′ ( x ) \lim\limits_{-2h\rightarrow0}\frac{f[x+(-2h)]-f(x)}{-2h}=-2f'(x) −2h→0lim−2hf[x+(−2h)]−f(x)=−2f′(x)
\quad
例题2: 已知 f ′ ( 1 ) = 4 , f ( 1 ) = 0 , 则 lim x → 1 f ( x ) x − 1 = f'(1)=4, f(1)=0, 则\lim\limits_{x\rightarrow1}\frac{f(x)}{x-1}= f′(1)=4,f(1)=0,则x→1limx−1f(x)= \quad 4
令 f ( x ) = 4 x − 4 f(x)=4x-4 f(x)=4x−4
\quad
例题: 求 lim x → 0 = f ( − 2 x ) − f ( 3 x ) x \lim\limits_{x\rightarrow0}=\frac{f(-2x)-f(3x)}{x} x→0lim=xf(−2x)−f(3x)
lim x → 0 f ( − 2 x ) − f ( 0 ) x − lim x → 0 f ( 3 x ) − f ( 0 ) x = − 2 f ′ ( 0 ) − 3 f ′ ( 0 ) = − 5 f ′ ( 0 ) \lim\limits_{x\rightarrow0}\frac{f(-2x)-f(0)}{x}-\lim\limits_{x\rightarrow0}\frac{f(3x)-f(0)}{x}=-2f'(0)-3f'(0)=-5f'(0) x→0limxf(−2x)−f(0)−x→0limxf(3x)−f(0)=−2f′(0)−3f′(0)=−5f′(0)
\quad
导数的定义2: \quad f ′ ( x 0 ) = lim x → x 0 f ( x ) − f ( x 0 ) x − x 0 f'(x_0)=\lim\limits_{x\rightarrow x_0}\frac{f(x)-f(x_0)}{x-x_0} f′(x0)=x→x0limx−x0f(x)−f(x0)
曲 线 y = f ( x ) 在 点 x 0 处 的 切 线 斜 率 = 函 数 y = f ( x ) 在 点 x 0 处 的 导 数 曲线y=f(x)在点x_0处的切线斜率=函数y=f(x)在点x_0处的导数 曲线y=f(x)在点x0处的切线斜率=函数y=f(x)在点x0处的导数
某一点的导数=斜率
1.点 ( x 0 , y 0 ) (x_0,y_0) (x0,y0)
2.斜率 k = f ′ ( x 0 ) k=f'(x_0) k=f′(x0)
3.切线方程 y − y 0 = k ( x − x 0 ) y-y_0=k(x-x_0) y−y0=k(x−x0)
4.法线方程 y − y 0 = − 1 k ( x − x 0 ) y-y_0=-\frac{1}{k}(x-x_0) y−y0=−k1(x−x0) \quad 注意:法线只能在切线处改
\quad
例题3: 求曲线 y = x 2 y=x^2 y=x2在 x = 1 x=1 x=1处的切线方程与法线方程
点(1,1)
斜率: K 切 = y ′ = 2 x ∣ x = 1 = 2 K_切=y'=2x|_{x=1}=2 K切=y′=2x∣x=1=2
切线方程: y-1=2(x-1)
法线方程: y-1= − 1 2 -\frac{1}{2} −21(x-1)
\quad
例题4: 函数 y = x − 1 x y=x-\frac{1}{x} y=x−x1在(1,0)处的切线与法线方程
斜率: K 切 = y ′ = 1 + 1 x 2 ∣ x = 1 = 2 K_切=y'=1+\frac{1}{x^2}|_{x=1}=2 K切=y′=1+x21∣x=1=2
切线方程: y-0=2(x-1)
法线方程: y-0= − 1 2 -\frac{1}{2} −21(x-1)
\quad
例题5: 曲线 y = 2 x + 1 − cos x y=\sqrt{2x+1}-\cos x y=2x+1−cosx在 x=0处的切线方程为:__________
当x=0时,y=0
点(0,0)
斜率: K 切 = y ′ = [ 1 2 x + 1 + sin x ] ∣ x = 0 = 1 K_切=y'=[\frac{1}{\sqrt{2x+1}}+\sin x]|_{x=0}=1 K切=y′=[2x+11+sinx]∣x=0=1
切线方程: y-0=1(x-0)
法线方程: y-0=-1(x-0)
\quad
例题6: 曲线 y = f ( x ) y=f(x) y=f(x)过点(1,2),且在任一点M(x,y)处切线的斜率为2x, 则该曲线的方程是_______
x 2 + 1 x^2+1 x2+1
\quad
例题7: 曲线 y = ln x y=\ln x y=lnx在 x = a x=a x=a处的切线方程为: ey=x, 则a=_____
斜率: K 切 = y ′ = 1 x ∣ x = a = 1 a K_切=y'=\frac{1}{x}|_{x=a}=\frac{1}{a} K切=y′=x1∣x=a=a1
e y = x = > y = 1 e x ey=x=>y=\frac{1}{e}x ey=x=>y=e1x
K 切 = 1 e K_切=\frac{1}{e} K切=e1
∴ a = e \therefore a=e ∴a=e
\quad
注意: 求可导只能用公式二去导
\quad
例题8:
讨 论 函 数 f ( x ) = { 2 x x > 1 x 2 x ≤ 1 的 连 续 性 与 可 导 性 讨论函数f(x)=\begin{cases} 2x & x>1 \\ x^2 & x\leq1 \quad\quad的连续性与可导性\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\\ \end{cases} 讨论函数f(x)={2xx2x>1x≤1的连续性与可导性
f ′ ( 1 − ) = lim x → 1 − f ( x ) − f ( x 0 ) x − x 0 = lim x → 1 − x 2 − 1 x − 1 = 2 f'(1^-)=\lim\limits_{x\rightarrow 1^-}\frac{f(x)-f(x_0)}{x-x_0}=\lim\limits_{x\rightarrow 1^-}\frac{x^2-1}{x-1}=2 f′(1−)=x→1−limx−x0f(x)−f(x0)=x→1−limx−1x2−1=2
f ′ ( 1 + ) = lim x → 1 + f ( x ) − f ( x 0 ) x − x 0 = lim x → 1 + 2 x − 1 x − 1 = ∞ f'(1^+)=\lim\limits_{x\rightarrow 1^+}\frac{f(x)-f(x_0)}{x-x_0}=\lim\limits_{x\rightarrow 1^+}\frac{2x-1}{x-1}=\infty f′(1+)=x→1+limx−x0f(x)−f(x0)=x→1+limx−12x−1=∞
∴ \therefore ∴ 极限不存在
∴ \therefore ∴ 函数 f ( x ) f(x) f(x)不连续也不可导
\quad
例题9: 设函数 f ( x ) = x ∣ x ∣ f(x)=x|x| f(x)=x∣x∣
证明 f ( x ) f(x) f(x)在点x=0处可导, 并求 f ′ ( 0 ) f'(0) f′(0)的值
f ( x ) = x ∣ x ∣ = { − x 2 x < 0 x 2 x ≥ 0 f(x)=x|x|=\begin{cases} -x^2 & x<0 \\ x^2 & x\geq0 \quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\\ \end{cases} f(x)=x∣x∣={−x2x2x<0x≥0
f ′ ( 0 − ) = lim x → 0 − f ( x ) − f ( x 0 ) x − x 0 = lim x → 0 − − x 2 − 0 x − 0 = 0 f'(0^-)=\lim\limits_{x\rightarrow 0^-}\frac{f(x)-f(x_0)}{x-x_0}=\lim\limits_{x\rightarrow 0^-}\frac{-x^2-0}{x-0}=0 f′(0−)=x→0−limx−x0f(x)−f(x0)=x→0−limx−0−x2−0=0
f ′ ( 0 + ) = lim x → 0 + f ( x ) − f ( x 0 ) x − x 0 = lim x → 0 + x 2 − 0 x − 0 = 0 f'(0^+)=\lim\limits_{x\rightarrow 0^+}\frac{f(x)-f(x_0)}{x-x_0}=\lim\limits_{x\rightarrow 0^+}\frac{x^2-0}{x-0}=0 f′(0+)=x→0+limx−x0f(x)−f(x0)=x→0+limx−0x2−0=0
f ′ ( 0 − ) = f ′ ( 0 + ) f'(0^-)=f'(0^+) f′(0−)=f′(0+)
∴ \therefore ∴ f ( x ) f(x) f(x)在点x=0处可导, f ′ ( x ) = 0 f'(x)=0 f′(x)=0
\quad
例题10:
设 函 数 f ( x ) = { x 2 + x 2 sin 1 x x ≠ 0 0 x = 0 设函数f(x)=\begin{cases} \frac{x}{2}+x^2\sin\frac{1}{x} & x≠0 \\ 0 & x=0 \quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\\ \end{cases} 设函数f(x)={2x+x2sinx10x=0x=0
证明 f ( x ) f(x) f(x)在x=0处可导
f ′ ( 0 ) = lim x → 0 f ( x ) − f ( x 0 ) x − x 0 = lim x → 0 x 2 + x 2 sin 1 x − 0 x − 0 = 1 2 f'(0)=\lim\limits_{x\rightarrow 0}\frac{f(x)-f(x_0)}{x-x_0}=\lim\limits_{x\rightarrow 0}\frac{\frac{x}{2}+x^2\sin\frac{1}{x}-0}{x-0}=\frac{1}{2} f′(0)=x→0limx−x0f(x)−f(x0)=x→0limx−02x+x2sinx1−0=21
\quad
先化简,再求导
( u ± v ) ′ = u ′ ± v ′ (u\pm v)'=u'\pm v' (u±v)′=u′±v′ | ( u ∗ v ) ′ = u ′ v + u v ′ (u*v)'=u'v+uv' (u∗v)′=u′v+uv′ |
---|---|
( u v ) ′ = u ′ v − u v ′ v 2 (\frac{u}{v})'=\frac{u'v-uv'}{v^2} (vu)′=v2u′v−uv′ | ( 3 u ) ′ = 3 u ′ (3u)'=3u' (3u)′=3u′ |
( x ) ′ = 1 2 x (\sqrt{x})'=\frac{1}{2\sqrt{x}} (x)′=2x1 | ( 1 x ) ′ = − 1 x 2 (\frac{1}{x})'=-\frac{1}{x^2} (x1)′=−x21 |
c ′ = 0 c'=0 c′=0 | ( x a ) ′ = a x a − 1 (x^a)'=ax^{a-1} (xa)′=axa−1 | ( a x ) ′ = a x ln a (a^x)'=a^x\ln a (ax)′=axlna | ( e x ) ′ = e x (e^x)'=e^x (ex)′=ex |
---|---|---|---|
( log a x ) ′ = 1 x ln a (\log_a{x})'=\frac{1}{x\ln a} (logax)′=xlna1 | ( ln x ) ′ = 1 x (\ln x)'=\frac{1}{x} (lnx)′=x1 | ( sin x ) ′ = cos x (\sin x)'=\cos x (sinx)′=cosx | ( cos x ) ′ = − sin x (\cos x)'=-\sin x (cosx)′=−sinx |
( tan x ) ′ = sec 2 x (\tan x)'=\sec^2 x (tanx)′=sec2x | ( arctan x ) ′ = 1 1 + x 2 (\arctan x)'=\frac{1}{1+x^2} (arctanx)′=1+x21 | ( arcsin x ) ′ = 1 1 − x 2 (\arcsin x)'=\frac{1}{\sqrt{1-x^2}} (arcsinx)′=1−x21 | ( arccos x ) ′ = − 1 1 − x 2 (\arccos x)'=-\frac{1}{\sqrt{1-x^2}} (arccosx)′=−1−x21 |
\quad
例题11: 求函数 y = x 2 ln x y=x^2\ln x y=x2lnx的导数
( x 2 ) ′ ln x + x 2 ( ln x ) ′ = 2 x ln x + x (x^2)'\ln x+x^2(\ln x)'=2x\ln x+x (x2)′lnx+x2(lnx)′=2xlnx+x
\quad
例题12:
(1)求函数 y = x + x e x − x + 1 x y=\frac{x+xe^x-\sqrt{x}+1}{x} y=xx+xex−x+1的导数
化简得:
y = 1 + e x − 1 x + 1 x y=1+e^x-\frac{1}{\sqrt{x}}+\frac{1}{x} y=1+ex−x1+x1
y ′ = e x + 1 2 x − 3 2 − 1 x 2 y'=e^x+\frac{1}{2}x^{-\frac{3}{2}}-\frac{1}{x^2} y′=ex+21x−23−x21
\quad
(2)求函数 y = x e x sin x y=xe^x\sin x y=xexsinx的导数
y ′ = x ′ e x sin x + x ( e x ) ′ sin x + x e x ( sin x ) ′ = e x ( sin x + x sin x + x cos x ) y'=x'e^x\sin x+x(e^x)'\sin x+xe^x(\sin x)'=e^x(\sin x+x\sin x+x\cos x) y′=x′exsinx+x(ex)′sinx+xex(sinx)′=ex(sinx+xsinx+xcosx)
\quad
(3)求函数 y = cot x y=\cot x y=cotx的导数
y ′ = ( cos x sin x ) ′ = ( cos x ) ′ sin x − cos x ( sin x ) ′ sin 2 x = − 1 sin 2 x y'=(\frac{\cos x}{\sin x})'=\frac{(\cos x)'\sin x-\cos x(\sin x)'}{\sin^2 x}=\frac{-1}{\sin^2 x} y′=(sinxcosx)′=sin2x(cosx)′sinx−cosx(sinx)′=sin2x−1
\quad
例题13: 求下列函数的导数
(1) y = 3 x 2 − 2 x 2 + 5 y=3x^2-\frac{2}{x^2}+5 y=3x2−x22+5
y ′ = 6 x − ( 2 1 x 2 ) ′ = 6 x + 4 x − 3 y'=6x-(2\frac{1}{x^2})'=6x+4x^{-3} y′=6x−(2x21)′=6x+4x−3
(2) y = ( 1 + x 2 ) tan x y=(1+x^2)\tan x y=(1+x2)tanx
y ′ = 2 x tan x + ( 1 + x 2 ) sec 2 x y'=2x\tan x+(1+x^2)\sec^2x y′=2xtanx+(1+x2)sec2x
(3) y = x arcsin x + cos π 3 y=x\arcsin x+\cos\frac{π}{3} y=xarcsinx+cos3π
y ′ = arcsin x + x 1 1 − x 2 + 0 y'=\arcsin x+x\frac{1}{\sqrt{1-x^2}}+0 y′=arcsinx+x1−x21+0
因为最后一项没有x
\quad
例: y = e − x y=e^{-x} y=e−x, 求 y ′ y' y′
( e − x ) ′ = ( e − x ) − x ′ ∗ ( − x ) x ′ (e^{-x})'=(e^{-x})_{-x}'*(-x)_x' (e−x)′=(e−x)−x′∗(−x)x′ \quad \quad 逐级求导
\quad \quad \quad = e − x ∗ ( − 1 ) =e^{-x}*(-1) =e−x∗(−1) \quad \quad \quad \quad 求导公式
\quad \quad \quad = − e − x =-e^{-x} =−e−x \quad \quad \quad \quad \quad \quad \quad 化简
\quad
例题14: 求下列复合函数的导数
(1) y = sin ( x 2 ) y=\sin(x^2) y=sin(x2)
y ′ = ( sin x 2 ) x 2 ′ ∗ ( x 2 ) x ′ y'=(\sin x^2)'_{x^2}*(x^2)_{x}' y′=(sinx2)x2′∗(x2)x′
\quad = 2 x cos x 2 =2x\cos x^2 =2xcosx2
\quad
(2) y = sin 2 x y=\sin^2 x y=sin2x
y ′ = 2 sin x ∗ cos x y'=2\sin x*\cos x y′=2sinx∗cosx
\quad = sin 2 x =\sin2x =sin2x
\quad
(3) y = ln sin 3 x y=\ln\sin3x y=lnsin3x
y ′ = 1 sin 3 x ∗ cos 3 x ∗ 3 y'=\frac{1}{\sin3x}*\cos3x*3 y′=sin3x1∗cos3x∗3
\quad = 3 cot 3 x =3\cot3x =3cot3x
\quad
(4) y = 1 − x 2 y=\sqrt{1-x^2} y=1−x2
y ′ = 1 2 1 − x 2 ∗ ( − 2 x ) y'=\frac{1}{2\sqrt{1-x^2}}*(-2x) y′=21−x21∗(−2x)
\quad = − x 1 − x 2 =\frac{-x}{\sqrt{1-x^2}} =1−x2−x
\quad
(5) y = arctan 3 x y=\arctan\frac{3}{x} y=arctanx3
y ′ = 1 1 + ( 3 x ) 2 ∗ ( − 3 x 2 ) y'=\frac{1}{1+(\frac{3}{x})^2}*(-\frac{3}{x^2}) y′=1+(x3)21∗(−x23)
\quad = − 3 x 2 + 9 =\frac{-3}{x^2+9} =x2+9−3
\quad
(6) y = ln ( x e − 2 x ) y=\ln(\sqrt{x}e^{-2x}) y=ln(xe−2x)
y = ln x + ln e − 2 x y=\ln\sqrt{x}+\ln e^{-2x} y=lnx+lne−2x
\quad = 1 2 ln x − 2 x ln e =\frac{1}{2}\ln x-2x\ln e =21lnx−2xlne
\quad = 1 2 ln x − 2 x =\frac{1}{2}\ln x-2x =21lnx−2x
y ′ = 1 2 x − 2 y'=\frac{1}{2x}-2 y′=2x1−2
\quad
(7) y = ln ( 2 x 3 e 2 x ) y=\ln(2x^3e^{2x}) y=ln(2x3e2x)
y = ln 2 + ln x 3 + ln e 2 x y=\ln2+\ln x^3+\ln e^{2x} y=ln2+lnx3+lne2x
\quad = ln 2 + 3 ln x + 2 x ln e =\ln2+3\ln x+2x\ln e =ln2+3lnx+2xlne
y ′ = 3 x + 2 y'=\frac{3}{x}+2 y′=x3+2
\quad
(8) y = e sin ( 2 x − 1 ) y=e^{\sin(2x-1)} y=esin(2x−1)
y ′ = [ e sin ( 2 x − 1 ) ] sin ( 2 x − 1 ) ′ ∗ [ sin ( 2 x − 1 ) ] 2 x − 1 ′ ∗ ( 2 x − 1 ) x ′ y'=[e^{\sin(2x-1)}]'_{\sin(2x-1)}*[\sin(2x-1)]'_{2x-1}*(2x-1)'_{x} y′=[esin(2x−1)]sin(2x−1)′∗[sin(2x−1)]2x−1′∗(2x−1)x′
y ′ = e sin ( 2 x − 1 ) ∗ cos ( 2 x − 1 ) ∗ 2 y'=e^{\sin(2x-1)}*\cos (2x-1)*2 y′=esin(2x−1)∗cos(2x−1)∗2
\quad
(9) y = cos x + e x 2 y=\cos x+e^{x^2} y=cosx+ex2
y ′ = − sin x + 2 x e 2 x y'=-\sin x+2xe^{2x} y′=−sinx+2xe2x
\quad
(10) y = ln ( x + 4 + x 2 ) y=\ln(x+\sqrt{4+x^2}) y=ln(x+4+x2)
y ′ = 1 x + 4 + x 2 ∗ ( 1 + x 4 + x 2 ) y'=\frac{1}{x+\sqrt{4+x^2}}*(1+\frac{x}{\sqrt{4+x^2}}) y′=x+4+x21∗(1+4+x2x)
y ′ = ( 4 + x 2 ) − 1 2 y'=(4+x^2)^{-\frac{1}{2}} y′=(4+x2)−21
\quad
(11) y = e 2 x sin ( ln x ) y=e^{2x}\sin(\ln x) y=e2xsin(lnx)
y ′ = 2 e 2 x sin ( l n x ) + 1 x e 2 x cos ( l n x ) y'=2e^{2x}\sin(lnx)+\frac{1}{x}e^{2x}\cos(lnx) y′=2e2xsin(lnx)+x1e2xcos(lnx)
\quad
二阶及二阶以上的导数统称为高阶导数
二阶导数记为 y ′ ′ , f ′ ′ ( x ) , d 2 y d x 2 或 d 2 f ( x ) d x 2 y'', f''(x), \frac{d^2y}{dx^2}或\frac{d^2f(x)}{dx^2} y′′,f′′(x),dx2d2y或dx2d2f(x)
三阶导数记为 y ′ ′ ′ , f ′ ′ ′ ( x ) , d 3 y d x 3 或 d 3 f ( x ) d x 3 y''', f'''(x), \frac{d^3y}{dx^3}或\frac{d^3f(x)}{dx^3} y′′′,f′′′(x),dx3d3y或dx3d3f(x)
四阶导数记为 y ( 4 ) , f ( 4 ) ( x ) , d 4 y d x 4 或 d 4 f ( x ) d x 4 y^{(4)}, f^{(4)}(x), \frac{d^4y}{dx^4}或\frac{d^4f(x)}{dx^4} y(4),f(4)(x),dx4d4y或dx4d4f(x)
…
n阶导数记为 y ( n ) , f ( n ) ( x ) , d n y d x n 或 d n f ( x ) d x n y^{(n)}, f^{(n)}(x), \frac{d^ny}{dx^n}或\frac{d^nf(x)}{dx^n} y(n),f(n)(x),dxndny或dxndnf(x)
\quad
例题15: 若 f ( x ) = 5 x + e x , 则 f ′ ′ ( 1 ) = 若f(x)=5x+e^x,则f''(1)= 若f(x)=5x+ex,则f′′(1)= \quad \quad \quad 先导再代
y ′ = 5 + e x y'=5+e^x y′=5+ex
y ′ ′ = e x y''=e^x y′′=ex
f ′ ′ ( 1 ) = e f''(1)=e f′′(1)=e
\quad
例题16: 已知 y = sin x , 求 y ( 2022 ) y=\sin x, 求y^{(2022)} y=sinx,求y(2022)
y ′ = cos x y'=\cos x y′=cosx
y ′ ′ = − sin x y''=-\sin x y′′=−sinx
y ′ ′ ′ = − cos x y'''=-\cos x y′′′=−cosx
y ( 4 ) = sin x y^{(4)}=\sin x y(4)=sinx
2022除4余2
∴ \therefore ∴ y ( 2022 ) = − sin x y^{(2022)}=-\sin x y(2022)=−sinx
\quad
例题17: 求函数 y = cos 2 x y=\cos2x y=cos2x的二阶导数
y ′ = − 2 sin 2 x y'=-2\sin 2x y′=−2sin2x
y ′ ′ = − 4 cos 2 x y''=-4\cos2x y′′=−4cos2x
\quad
例题18: 若函数 f ( x ) = tan x , 则 f ′ ( 0 ) = f(x)=\tan x, 则f'(0)= f(x)=tanx,则f′(0)=1
f ′ ( x ) = sec 2 x = 1 cos 2 x f'(x)=\sec^2x=\frac{1}{\cos^2 x} f′(x)=sec2x=cos2x1
\quad
显函数就是x,y分的很清楚
隐函数就是x,y混在一起
显函数
例如:
y = f ( x ) y=f(x) y=f(x)
y = sin ( x 2 + 2 x ) y=\sin(x^2+2x) y=sin(x2+2x)
y = ln ( x + 4 + x 2 ) y=\ln(x+\sqrt{4+x^2}) y=ln(x+4+x2)
隐函数
例如:
x + y − x y = 1 x+y-xy=1 x+y−xy=1
x e y = y xe^y=y xey=y
sin x y + x = y \sin xy+x=y sinxy+x=y
\quad
( y 2 ) x ′ = ( y 2 ) y ′ ∗ y ′ = 2 y ∗ y ′ (y^2)'_x=(y^2)'_y*y'=2y*y' (y2)x′=(y2)y′∗y′=2y∗y′
( sin y ) x ′ = ( sin y ) y ′ ∗ y ′ = cos y ∗ y ′ (\sin y)'_x=(\sin y)'_y*y'=\cos y*y' (siny)x′=(siny)y′∗y′=cosy∗y′
( e y ) x ′ = ( e y ) y ′ ∗ y ′ = e y ∗ y ′ (e^y)'_x=(e^y)'_y*y'=e^y*y' (ey)x′=(ey)y′∗y′=ey∗y′
( ln y ) x ′ = ( ln y ) y ′ ∗ y ′ = 1 y ∗ y ′ (\ln y)'_x=(\ln y)'_y*y'=\frac{1}{y}*y' (lny)x′=(lny)y′∗y′=y1∗y′
( arctan y ) x ′ = ( arctan y ) y ′ ∗ y ′ = 1 1 + y 2 ∗ y ′ (\arctan y)'_x=(\arctan y)'_y*y'=\frac{1}{1+y^2}*y' (arctany)x′=(arctany)y′∗y′=1+y21∗y′
( x + y ) ′ = x ′ + y ′ (x+y)'=x'+y' (x+y)′=x′+y′
( x ∗ y ) ′ = x ′ y + x y ′ = y + x y ′ (x*y)'=x'y+xy'=y+xy' (x∗y)′=x′y+xy′=y+xy′
( e x y ) ′ = e x y ∗ ( x y ) ′ = e x y ∗ ( y + x y ′ ) (e^{xy})'=e^{xy}*(xy)'=e^{xy}*(y+xy') (exy)′=exy∗(xy)′=exy∗(y+xy′)
( x ∗ y 2 ) = x ′ y 2 + x ( y 2 ) ′ = y 2 + 2 x y ∗ y ′ (x*y^2)=x'y^2+x(y^2)'=y^2+2xy*y' (x∗y2)=x′y2+x(y2)′=y2+2xy∗y′
导数的表示方式: y ′ ( x ) , d y d x , d f ( x ) d x y'(x), \frac{dy}{dx}, \frac{df(x)}{dx} y′(x),dxdy,dxdf(x)
\quad
例题19: 已知函数 y = y ( x ) y=y(x) y=y(x)由方程 x + y = e y x+y=e^y x+y=ey所确定, 求函数 y = y ( x ) y=y(x) y=y(x)的导数 d y d x \frac{dy}{dx} dxdy
两边求导
1 + y ′ = e y ∗ y ′ 1+y'=e^y*y' 1+y′=ey∗y′
= e y ∗ y ′ − y ′ = 1 e^y*y'-y'=1 ey∗y′−y′=1
= y ′ ( e y − 1 ) = 1 y'(e^y-1)=1 y′(ey−1)=1
= y ′ = 1 e y − 1 y'=\frac{1}{e^y-1} y′=ey−11
\quad
例题20: 已知函数 y = y ( x ) y=y(x) y=y(x)由方程 e y + 2 x y = x 2 e^y+2xy=x^2 ey+2xy=x2确定, 求 y ′ ( x ) y'(x) y′(x)
两边求导
e y ∗ y ′ + 2 y + 2 x y ′ = 2 x e^y*y'+2y+2xy'=2x ey∗y′+2y+2xy′=2x
= y ′ ( e y + 2 x ) = 2 x − 2 y y'(e^y+2x)=2x-2y y′(ey+2x)=2x−2y
= y ′ = 2 x − 2 y e y + 2 x y'=\frac{2x-2y}{e^y+2x} y′=ey+2x2x−2y
\quad
例题21: 求曲线 e y + 2 x + y = 3 e^y+2x+y=3 ey+2x+y=3上纵坐标y=0的点处的切线方程
当y=0时, x=1
e y ∗ y ′ + 2 + y ′ = 0 e^y*y'+2+y'=0 ey∗y′+2+y′=0
= y ′ ( e y + 1 ) = − 2 y'(e^y+1)=-2 y′(ey+1)=−2
= y ′ = − 2 e y + 1 y'=-\frac{2}{e^y+1} y′=−ey+12
K 切 = − 2 e y + 1 ∣ y = 0 = − 1 K_{切}=-\frac{2}{e^y+1}|_{y=0}=-1 K切=−ey+12∣y=0=−1
切线方程: y − 0 = − 1 ( x − 1 ) y-0=-1(x-1) y−0=−1(x−1)
化简得: y = 1 − x y=1-x y=1−x
\quad
例题22: 已知函数 y = y ( x ) y=y(x) y=y(x)由方程 y 2 = x 2 + y e x y^2=x^2+ye^x y2=x2+yex所确定, 求 y ′ y' y′
2 y ∗ y ′ = 2 x + y ′ e x + y e x 2y*y'=2x+y'e^x+ye^x 2y∗y′=2x+y′ex+yex
y ′ = 2 x + y e x 2 y − e x y'=\frac{2x+ye^x}{2y-e^x} y′=2y−ex2x+yex
\quad
例题23: 曲线 x 2 2 + y 2 = 3 \frac{x^2}{2}+y^2=3 2x2+y2=3在(2,-1)点处的切线方程为
1 2 x 2 + y 2 = 3 \frac{1}{2}x^2+y^2=3 21x2+y2=3
求导
x + 2 y ∗ y ′ = 0 x+2y*y'=0 x+2y∗y′=0
y ′ = − x 2 y y'=\frac{-x}{2y} y′=2y−x
K 切 = − x 2 y ∣ x = 2 , y = − 1 = 1 K_{切}=\frac{-x}{2y}|_{x=2,y=-1}=1 K切=2y−x∣x=2,y=−1=1
切线方程: y − ( − 1 ) = 1 ( x − 2 ) y-(-1)=1(x-2) y−(−1)=1(x−2)
化简得: y = x − 3 y=x-3 y=x−3
\quad
\quad
例题24:
已 知 椭 圆 的 参 数 方 程 为 { x = a cos t y = b sin t ( 其 中 t 为 参 数 ) , 求 d y d x ∣ t = π 4 已知椭圆的参数方程为\begin{cases} x=a\cos t \\ y=b\sin t & (其中t为参数),求\frac{dy}{dx}|_{t=\frac{π}{4}}\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\\ \end{cases} 已知椭圆的参数方程为{x=acosty=bsint(其中t为参数),求dxdy∣t=4π
( b sin t a cos t ) ′ = b cos t − a sin t ∣ t = π 4 = − b a (\frac{b\sin t}{a\cos t})'=\frac{b\cos t}{-a\sin t}|_{t=\frac{π}{4}}=-\frac{b}{a} (acostbsint)′=−asintbcost∣t=4π=−ab
\quad
例题25:
曲 线 { x = t 3 y = e t 在 t = 1 处 的 切 线 方 程 是 曲线\begin{cases} x=t^3 \\ y=e^t & 在t=1处的切线方程是\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\\ \end{cases} 曲线{x=t3y=et在t=1处的切线方程是
当t等于1时, x=1, y=e
d y d x = e t 3 t 2 \frac{dy}{dx}=\frac{e^t}{3t^2} dxdy=3t2et
k 切 = e t 3 t 2 ∣ t = 1 = e 3 k_{切}=\frac{e^t}{3t^2}|_{t=1}=\frac{e}{3} k切=3t2et∣t=1=3e
切线方程: y − e = e 3 ( x − 1 ) y-e=\frac{e}{3}(x-1) y−e=3e(x−1)
\quad
例题26:
{ x = 2 t y = sin t \begin{cases} x=2t \\ y=\sin t \quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\\ \end{cases} {x=2ty=sint
求
(1) t=0时, x,y的值
(2) d x d t 和 d y d t \frac{dx}{dt}和\frac{dy}{dt} dtdx和dtdy
(3) 在t=0处的切线方程
解:
(1) x=0, y=0
(2) d x d t = 2 \frac{dx}{dt}=2 dtdx=2, d y d t = cos t \frac{dy}{dt}=\cos t dtdy=cost
(3) K 切 = d y d x = cos t 2 ∣ t = 0 K_{切}=\frac{dy}{dx}=\frac{\cos t}{2}|_{t=0} K切=dxdy=2cost∣t=0
切线方程: y − 0 = 1 2 ( x − 0 ) y-0=\frac{1}{2}(x-0) y−0=21(x−0)
\quad
理解 y x ′ = d y d x y'_x=\frac{dy}{dx} yx′=dxdy
y的微分 d y = y ′ d x dy=y'dx dy=y′dx \quad \quad \quad (求微分)
y ′ d x = d y y'dx=dy y′dx=dy \quad \quad \quad \quad \quad \quad (凑微分)
常见凑微分公式
(1) 5 d x = ( 5 x ) ′ d x = d ( 5 x ) 5dx=(5x)'dx=d(5x) 5dx=(5x)′dx=d(5x)
(2) 5 x 4 d x = ( x 5 ) ′ d x = d ( x 5 ) 5x^4dx=(x^5)'dx=d(x^5) 5x4dx=(x5)′dx=d(x5)
(3) e x d x = ( e x ) d x = d ( e x ) e^xdx=(e^x)dx=d(e^x) exdx=(ex)dx=d(ex)
(4) 1 x d x = ( ln x ) ′ d x = d ( ln x ) \frac{1}{x}dx=(\ln x)'dx=d(\ln x) x1dx=(lnx)′dx=d(lnx)
(5) cos x d x = ( sin x ) ′ d x = d ( sin x ) \cos xdx=(\sin x)'dx=d(\sin x) cosxdx=(sinx)′dx=d(sinx)
(6) sin x d x = ( − cos x ) ′ d x = d ( − cos x ) \sin xdx=(-\cos x)'dx=d(-\cos x) sinxdx=(−cosx)′dx=d(−cosx)
(7) 1 1 + x 2 d x = ( arctan x ) ′ d x = d ( arctan x ) \frac{1}{1+x^2}dx=(\arctan x)'dx=d(\arctan x) 1+x21dx=(arctanx)′dx=d(arctanx)
\quad
例题27:
设函数 y = − e − x y=-e^{-x} y=−e−x,则 d y = dy= dy=_____
d y = y ′ d x dy=y'dx dy=y′dx
= − e − x ∗ ( − 1 ) d x -e^{-x}*(-1)dx −e−x∗(−1)dx
= e − x d x e^{-x}dx e−xdx
\quad
例题28:
设 f ( x ) = x ln x − x , 求 d f ( x ) f(x)=x\ln x-x, 求df(x) f(x)=xlnx−x,求df(x)
d f ( x ) = f ′ ( x ) d x df(x)=f'(x)dx df(x)=f′(x)dx
f ′ ( x ) = ln x + 1 − 1 f'(x)=\ln x+1-1 f′(x)=lnx+1−1
∴ \therefore ∴ d f ( x ) = ln x d x df(x)=\ln xdx df(x)=lnxdx