可视化分割体积seg.nrrd(切片为例)

目录

步骤

拓展:CT值/HU值

步骤

不能直接可视化的原因:

seg.nrrd保存的是标签类别值,如下图标签类别值是[1,6],没有标记的部分值为0

可视化分割体积seg.nrrd(切片为例)_第1张图片

1.将seg.nrrd保存为nrrd格式,并读取

2.将数组*int(255/标签类别数),变为灰度值

若直接将seg.nrrd当nrrd读取(直接读取会警告类型,且对seg.nrrd读取前做的Transforms会失效,但不影响运行)

2022-12-15 13:04:10.818 (   5.981s) [        D5F02280]      vtkNrrdReader.cxx:575   WARN| vtkNrrdReader (0xb33e6bc0): Unknown field: 'Segmentation_ConversionParameters:=Collapse labelmaps|1|Merge the labelmaps into as few shared labelmaps as possible 1 = created labelmaps will be shared if possible without overwriting each other.&Compute surface normals|1|Compute surface normals. 1 (default) = surface normals are computed. 0 = surface normals are not computed (slightly faster but produces less smooth surface display).&Crop to reference image geometry|0|Crop the model to the extent of reference geometry. 0 (default) = created labelmap will contain the entire model. 1 = created labelmap extent will be within reference image extent.&Decimation factor|0.0|Desired reduction in the total number of polygons. Range'

可视化分割体积seg.nrrd(切片为例)_第2张图片

import nrrd

num_ = 10  #切片数量
add_ = 2#间隔2帧

img_arr, _ = nrrd.read(file) 
img_arr*=int(255/6)

D, H, W = image.shape

d0, h0, w0 = int(D/2), int(H/2), int(W/2)#坐标中心点作为原点
# dh 
dh_slices = img_arr[:, :, w0-num_ : w0+num_ : add_]#从三轴方向每间隔间隔2帧,找20帧图像,即10帧
for i in range(num_):
	cu = dh_slices[:,:,i]

	cu_Image = img.fromarray(cu)
	cu_Image = cu_Image.transpose(img.FLIP_TOP_BOTTOM)#上下对换
	cu_array = np.array(cu_Image)

	img_path = "{}/dh_{}.png".format(re_path_, i)
	cv2.imwrite(img_path, cu_array)

拓展:CT值/HU

CT值又叫HU(Hounsfiled Unit),代表了物体真正的密度。

范围是-1024 -- x ,之所以说是x是因为各种资料众说纷纭,

对于nii格式的图片,nibabel, simpleitk常用的api接口,都会自动的进行原始数据转化HU值过程

(除非专门用nib.load('xx').dataobj.get_unscaled()或者itk.ReadImage('xx').GetPixel(x,y,z)才能取得原始数据)
对于dcm格式的图片,simpleitk, pydicom常用的api接口都不会将原始数据自动转化为Hu!!(itk snap软件读入dcm或nii都不会对数据进行scale操作)

hu值是与设备无关的,不同范围之内的值可以代表不同器官。
hu的范围一般来说很大,这就导致了对比度很差,如果需要针对具体的器官进行处理,效果会不好,于是就有了windowing的方法

可视化分割体积seg.nrrd(切片为例)_第3张图片

你可能感兴趣的:(医学图像,python,开发语言)