- 大模型时代的知识焦虑
机载软件与适航
机器学习-建模算法-代理模型人工智能大数据
引言:浪潮之巅,焦虑暗涌大模型时代已经浩荡而来,如同奔腾的浪潮,以令人惊叹的速度重塑着世界的面貌。从智能客服的温声细语,到AI绘画的妙笔生花,再到自动驾驶的日趋成熟,大型语言模型、图像模型等人工智能技术以前所未有的姿态,渗透进我们生活的方方面面。信息获取前所未有的便捷,知识创造空前高效,人机交互焕然一新,一个充满无限可能的智能化未来似乎触手可及。然而,在这令人眼花缭乱的技术盛景之下,一股无形的焦虑
- GGUF量化模型技术解析与DeepSeek-R1-Distill-Llama-8B选型指南
每天三杯咖啡
人工智能
```markdown#【完全指南】GGUF量化技术与DeepSeek-R1模型选型:从入门到部署##什么是模型量化?(小白扫盲版)###1.1量化就像"模型减肥术"-**传统模型**:每个参数用32位浮点数(好比高清无损图片)-**量化模型**:用4-8位整数存储(类似手机压缩照片)-**核心原理**:`FP32→Int8/Int4`的数学映射,保留关键特征###1.2为什么要量化?|对比项|原
- 含光热电站、有机有机朗肯循环、P2G的综合能源优化调度(Matlab代码实现)
创新优化代码学习
能源matlab前端
个人主页欢迎来到本博客❤️❤️博主优势:博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。⛳️座右铭:行百里者,半于九十。本文目录如下:目录1概述含光热电站、有机朗肯循环与P2G的综合能源优化调度研究一、技术基础与系统作用二、多技术协同机制三、优化调度模型构建四、典型案例与仿真分析五、未来研究方向结论2运行结果3参考文献4Matlab代码实现1概述光热发电(concentratingsolarp
- RAG 企业级应用落地框架细节差异对比
一顿码
架构人工智能python数据挖掘知识图谱语言模型
—1—什么是RAG?RAG检索增强生成本质上来讲,就三件事情:第一、Indexing索引。即如何更有效地存储知识。第二、Retrieval检索。即在庞大的知识库中,如何筛选出少量的有益知识,供大模型参考。第三、Generation生成。即如何将用户的提问与检索到的知识相结合,使得大模型能够生成有价值的回答。这三个步骤表面上看似乎并不复杂,然而在RAG从构建到实际部署的整个流程中,包含了众多精细且复
- Moodle + Websoft9:创新教育的强大组合,助力教学与学习
开源软件
Moodle+Websoft9:构建未来课堂的技术基石一、Moodle:开源生态的深度解析•模块化设计:支持超800个官方插件,如H5P交互内容创作、BigBlueButton虚拟课堂,满足个性化教学需求。•学习分析引擎:内置LearningAnalyticsAPI,可集成Python/R语言进行深度学习,预测学生学业风险。•移动优先战略:MoodleApp支持离线学习、扫码签到,2023年新增A
- 新浪财经App喜娜AI助手通过大模型登记,已上线AI摘要和个股公告AI解读
量子位
3月14日,官方发布的信息显示,新浪财经App喜娜AI助手近日已通过北京市生成式人工智能服务登记。目前,喜娜AI助手已上线两项创新功能:喜娜AI摘要和个股公告AI解读。这两项功能旨在通过先进的人工智能技术,提升用户对财经资讯和上市公司公告的理解与分析效率,这标志着AI技术在信息服务领域的又一重大突破。喜娜AI摘要:快速提炼财经资讯核心要点AI时代,资讯信息迎来爆炸性增长,用户每天都要面对海量资讯,
- 书籍-《动手学深度学习(英文版)》
书籍:DiveintoDeepLearning作者:AstonZhang,ZacharyC.Lipton,MuLi,AlexanderJ.Smola出版:CambridgeUniversityPress编辑:陈萍萍的公主@一点人工一点智能下载:书籍下载-《动手学深度学习(英文版)》01书籍介绍深度学习已经彻底改变了模式识别,为计算机视觉、自然语言处理和自动语音识别等领域提供了强大的工具。应用深度学
- 模型微调:让AI更懂你的魔法棒
带上一无所知的我
pytorch人工智能python
模型微调:让AI更懂你的魔法棒✨在人工智能的世界里,模型微调(Fine-tuning)就像是一位魔法师用魔法棒对预训练模型进行“个性化改造”,让它更适应特定的任务。今天,我们就来深入探讨模型微调的技术细节,让你也能像魔法师一样,轻松驾驭AI模型!什么是模型微调?模型微调是指在预训练模型的基础上,通过少量的特定任务数据进行训练,使模型更好地适应新任务的技术。预训练模型通常是基于大规模数据集(如Ima
- 【十 自然语言处理项目实战】【10.2 数据收集与预处理】
再见孙悟空_
#自然语言处理人工智能知识图谱transformer自然语言处理数据收集自然语言处理预处理自然语言处理项目
各位在数据泥潭里打滚的勇士们,今天咱们要聊的这个话题,就像学做川菜必须掌握的"火锅底料炒制法"——数据收集与预处理!这玩意儿看着像脏活累活,实则是决定你模型上限的生死关卡。作为一个曾把BERT训成人工智障的老司机,这就把五年掉坑经验熬成一锅十全大补汤!(戴上橡胶手套准备掏数据)一、数据收集的野路子:比盗墓还刺激的冒险1.1公开数据集寻宝图(附藏宝坐标)①正道的光:Kaggle(数据界的沃尔玛):搜
- 根据论文复现大模型方法以及出错处理技巧
Ai玩家hly
从0倒1论文复现大模型复现Ai大模型复现
复现一篇论文中的大模型搭建涉及以下几个关键步骤:理解论文的模型架构、数据集处理、超参数设置以及实验环境的搭建。这里给出一个基本的实现方法示例,假设我们选择复现一个图像分类任务中的经典模型,例如ResNet。实现步骤示例1.理解论文和模型架构选择一篇关于ResNet的论文作为示例,例如《DeepResidualLearningforImageRecognition》(Heetal.,2015)。2.
- 从 DeepSeek 到 AI 工具箱:Websoft9 应用托管平台赋能高校教学与科研
人工智能deepseek
从DeepSeek到AI工具箱:Websoft9应用托管平台赋能高校教学与科研人工智能技术的快速发展正在重塑高校的教学与科研生态。从智能教学辅助到跨学科研究,AI工具的应用场景不断扩展,而技术落地的复杂性也带来新的挑战。在这一背景下,如何将大模型能力与多样化AI工具无缝整合,构建安全、易用的科研教学环境,成为高校数字化转型的关键命题。一、高校智能化转型的三大痛点技术门槛高•AI工具部署依赖专业运维
- 聊聊关于Python与人工智能那些事
小G-biu-
python人工智能tensorflow
Python与人工智能:介绍Python在人工智能方面的应用Python是一种广泛使用的编程语言,也是人工智能领域中最受欢迎的语言之一。Python提供了许多用于构建和训练人工智能模型的库和框架。本文将介绍一些常见的人工智能技术以及Python在这些技术中的应用。OpenAIOpenAI是一个非营利组织,旨在推动人工智能的发展并促进其对人类的利益。OpenAI通过开发人工智能技术、研究人工智能的影
- 获取网站流量的方法有哪些?
liuliangpuzi
互联网流量运营数据搜索引擎百度大数据
不同流量源的比例反映了网站所有者不同的管理策略和网站的发展阶段。那么,网站流量来源都有哪些?接下来小编就跟大家浅析下网站流量来源的三大途径,一起来看看吧!1、直接访问来源搜索引擎源和外部链源依赖于外部,因此通常存在较大的不确定性,如搜索引擎算法调整、业务模型调整、策略监管等,这可能会使网站的流量从每天数十万IP急剧下降到数千。对于小型商业站来说,从搜索引擎获取流量是一种更经济实惠、廉价的选择,但对
- Matlab基于BP神经网络与NSGA-II的多目标工艺参数优化方法
天天酷科研
工艺参数优化matlab神经网络工艺参数优化
Matlab基于BP神经网络与NSGA-II的多目标工艺参数优化方法一、方法原理与框架BP神经网络的作用BP神经网络通过建立工艺参数与目标性能(如翘曲变形、收缩率、硬度等)之间的非线性映射关系,作为代理模型替代复杂的物理仿真或实验。其优势在于:能够处理多输入-多输出的复杂非线性关系,例如激光功率、扫描速度与熔覆层性能的关联。在注塑成型中,预测体积收缩率和翘曲变形的相对误差可控制在5%以内。通过正交
- 复旦:过程奖励优化多模态推理
大模型任我行
大模型-模型训练人工智能自然语言处理语言模型论文笔记
标题:VisualPRM:AnEffectiveProcessRewardModelforMultimodalReasoning来源:arXiv,2503.10291摘要我们引入了VisualPRM,这是一种具有8B参数的高级多模态过程奖励模型(PRM),它通过Best-of-N(BoN)评估策略提高了现有多模态大型语言模型(MLLM)在不同模型尺度和族之间的推理能力。具体来说,我们的模型提高了三
- 使用 TensorFlow 进行图像处理:深度解析卷积神经网络(CNN)
一碗黄焖鸡三碗米饭
人工智能前沿与实践tensorflow图像处理cnn人工智能机器学习pythonai
目录使用TensorFlow进行图像处理:深度解析卷积神经网络(CNN)1.什么是卷积神经网络(CNN)?CNN的基本结构为什么CNN适合图像处理?2.使用TensorFlow构建CNN2.1环境准备2.2加载并预处理MNIST数据集2.3构建CNN模型2.4编译和训练模型2.5评估模型3.CNN的优化与改进3.1使用数据增强3.2调整网络结构4.CNN在其他图像处理任务中的应用5.总结参考文献在
- FastAPI测试策略:参数解析单元测试
qcidyu
文章归档异常传播验证依赖注入测试请求模拟技术测试覆盖率优化Pydantic验证测试单元测试策略参数解析测试
扫描二维码关注或者微信搜一搜:编程智域前端至全栈交流与成长探索数千个预构建的AI应用,开启你的下一个伟大创意第一章:核心测试方法论1.1三层测试体系架构#第一层:模型级测试deftest_user_model_validation():withpytest.raises(ValidationError):User(age=-5)#第二层:依赖项测试deftest_auth_dependency()
- AI写作平台推荐:AnKo免费AI助力高效写作!
zhongken259
人工智能AI编程aiAI平台AI软件AI写作AI网站
AI写作平台推荐:AnKo免费AI助力高效写作!在如今的创作领域,AI写作平台推荐已经成为许多创作者的首选。尤其是AnKo深受用户喜爱。AI写作平台推荐AnKo,不仅能提升写作效率,还能实现精准创作,真是不可错过!AI写作平台推荐:独特优势AI写作平台推荐AnKo,凭借其多模型AI聚合工具,能够提供更加精准和个性化的写作服务。AI写作平台推荐AnKo,不同于其他平台,它能根据创作者的需求灵活调整创
- 量化投资中的投资组合风险溢价模型
云策量化
量化投资量化交易量化软件量化炒股QMT量化交易PTrade量化软件量化投资deepseek
推荐阅读:《程序化炒股:如何申请官方交易接口权限?个人账户可以申请吗?》量化投资中的投资组合风险溢价模型在量化投资的世界里,风险和回报总是如影随形。投资者们就像是在大海中航行的船长,既要寻找宝藏,又要避开暗礁。今天,我们就来聊聊量化投资中的一个关键工具——投资组合风险溢价模型,它就像是船长的罗盘,帮助我们在风险和回报之间找到平衡。引言:风险与回报的舞蹈在量化投资中,我们经常听到“风险溢价”这个词。
- 【3D模型】【游戏开发】【Blender】Blender模型分享-狮头木雕附导入方法
踏雪无痕老爷子
资源介绍3dblender
导入方法:[Blender]如何导入包含纹理的.blend模型文件在3D建模和渲染工作中,Blender是一款功能强大的免费开源软件。很多时候,我们需要导入.blend后缀的模型文件,同时确保纹理(textures)文件夹中的贴图能够正确加载。本文将介绍详细的导入步骤以及可能遇到的问题和解决方案。1.直接打开.blend文件如果你的.blend文件是一个完整的工程文件,包含了模型和纹理,直接打开即
- 实战LLM强化学习——使用GRPO(DeepSeek R1出圈算法)
大富大贵7
程序员知识储备1程序员知识储备2程序员知识储备3经验分享
引言近年来,深度强化学习(DRL)已经成为解决复杂决策问题的一个强有力工具,尤其是在自然语言处理(NLP)领域的广泛应用。通过不断优化决策策略,DRL能在大量数据中学习最佳行为,尤其是大型语言模型(LLM)在任务中展现出的巨大潜力。然而,随着模型规模的扩大和任务复杂性的增加,传统的强化学习算法开始暴露出训练效率低、收敛速度慢等问题。为了解决这些挑战,DeepSeek公司提出了一个新的强化学习算法—
- AI学习指南RAG篇(24)-RAGFlow的社区与开源贡献
俞兆鹏
AI学习指南人工智能
一、引言RAGFlow是一款基于深度文档理解的开源RAG(Retrieval-AugmentedGeneration,检索增强生成)引擎,旨在解决现有RAG技术在数据处理和生成答案方面的挑战。RAGFlow通过结合大型语言模型(LLMs)的强大生成能力和高效的信息检索系统,为用户提供了一种全新的交互体验。本文将鼓励读者参与到RAGFlow的开源社区中,共同推动技术的发展和创新。二、RAGFlow的
- 量子密码学技术架构解析与程序员视角
算法
量子计算威胁模型分析传统公钥密码体系(RSA/ECC)的安全假设基于:大数分解问题的计算复杂度(RSA)椭圆曲线离散对数问题(ECC)有限域离散对数问题(DSA)Shor算法的时间复杂度为O((logN)^3),当量子比特数达到阈值时:2048位RSA可在8小时内破解(理论值)ECC-256的破解时间将降至多项式级别Grover算法对对称密码的影响:AES-256的有效安全性降至2^128哈希函数
- 有了大模型为何还需要Agent智能体
全栈你个大西瓜
人工智能人工智能AIAgentAgent智能体Agent原理
一、什么是Agent?Agent(智能体)是一种能感知环境、自主决策、执行动作的智能实体,当它与大语言模型(如通义千问QWen、GPT)结合时,形成一种**“增强型AI系统”**。其核心架构如下:大脑(LLM):负责语言理解、逻辑推理、知识问答等认知任务。感官(工具链):通过API、传感器或数据库获取实时数据(如天气、股价)。手脚(执行器):调用外部工具完成任务(如发送邮件、控制智能家居)。记忆(
- Manus详细介绍
accurater
c++算法笔记深度学习人工智能神经网络
第一章Manus的技术背景与核心突破初识ManusAI1.1什么是Manus?Manus是由中国团队Monica.im于2025年3月推出的全球首款通用型AI智能体(AIAgent)。其名称源自拉丁语“MensetManus”,意为“手脑并用”,强调将大模型的逻辑推理能力转化为实际生产力。与传统的对话式AI(如ChatGPT、DeepSeek)不同,Manus的核心定位是“执行型助手”,能够自主完
- 21.7 ChatGLM3-6B私有化部署实战:2小时快速搭建200 QPS高可用模型服务
少林码僧
AI大模型应用实战专栏人工智能gpt语言模型
ChatGLM3-6B私有化部署实战:2小时快速搭建200QPS高可用模型服务ChatGLM3-6B私有化部署实战指南关键词:ChatGLM3-6B部署,私有化模型服务,性能优化,容器化部署,API服务封装1.部署环境准备与硬件规划ChatGLM3-6B私有化部署需要充分考虑算力资源与软件生态的适配性,以下是推荐配置方案:
- Opencv计算机视觉编程攻略-第一节 图像读取与基本处理
weixin_44242403
深度学习opencv计算机视觉
1.图像读取导入依赖项的h文件#include#include#include#include项目Valuecore.hpp基础数据结构和操作(图像存储、矩阵运算、文件I/O)highgui.hpp图像显示、窗口管理、用户交互(图像/视频显示、用户输入处理、结果保存)imgproc.hpp图像处理算法(图像滤波、几何变换、边缘检测、形态学操作)二读取图片Matimage;//图像矩阵std::co
- 通过LoRA(Low-Rank Adaptation)低秩矩阵分解来高效微调权重变化
背太阳的牧羊人
模型微调矩阵线性代数深度学习人工智能自然语言处理LoRA
LoRA的原理LoRA的核心思想是用低秩矩阵分解来建模参数的变化,而不是直接调整整个权重矩阵。这种方法通过减少微调的参数数量来提高训练效率。基本公式假设预训练模型的某一层权重为(W\in\mathbb{R}^{d\timesk}),LoRA的调整方式是:[W’=W+\DeltaW]其中(\DeltaW)是调整后的权重变化。LoRA假设权重变化(\DeltaW)的秩较低,可以表示为两个低秩矩阵的乘积
- centos7输入python -m bitsandbytes报错CUDA Setup failed despite GPU being available. Please run the follo
小太阳,乐向上
python开发语言
在centos7.9系统中安装gpu驱动及cuda,跑大模型会报错,提示让输入python-mbitsandbytes依然报错:CUDASETUP:Loadingbinary/usr/local/python3/lib/python3.9/site-packages/bitsandbytes/libbitsandbytes_cuda117.so.../lib64/libstdc++.so.6:ve
- glm-4v-9b 踩坑(4-bit量化,bitsandbytes 异常)
phynikesi
pytorchglm-4v-9b踩坑bitsandbytes异常
前言本文只分享了自己在体验glm-4v-9b过程中遇到的问题,没有涉及对模型本身以及更多问题的分析,大家可先看问题描述,再决定是否看下去。实验平台:linux系统,RTXA4000。嫌麻烦的可以直接到文未看结论。问题描述16g显卡难以加载模型bitsandbytes异常,模型无法运行加载问题本人设备有限,引用一下别人完整加载模型的数据,大约18.9g。用16g显卡直接报OOM,用8-bit加载还是
- 戴尔笔记本win8系统改装win7系统
sophia天雪
win7戴尔改装系统win8
戴尔win8 系统改装win7 系统详述
第一步:使用U盘制作虚拟光驱:
1)下载安装UltraISO:注册码可以在网上搜索。
2)启动UltraISO,点击“文件”—》“打开”按钮,打开已经准备好的ISO镜像文
- BeanUtils.copyProperties使用笔记
bylijinnan
java
BeanUtils.copyProperties VS PropertyUtils.copyProperties
两者最大的区别是:
BeanUtils.copyProperties会进行类型转换,而PropertyUtils.copyProperties不会。
既然进行了类型转换,那BeanUtils.copyProperties的速度比不上PropertyUtils.copyProp
- MyEclipse中文乱码问题
0624chenhong
MyEclipse
一、设置新建常见文件的默认编码格式,也就是文件保存的格式。
在不对MyEclipse进行设置的时候,默认保存文件的编码,一般跟简体中文操作系统(如windows2000,windowsXP)的编码一致,即GBK。
在简体中文系统下,ANSI 编码代表 GBK编码;在日文操作系统下,ANSI 编码代表 JIS 编码。
Window-->Preferences-->General -
- 发送邮件
不懂事的小屁孩
send email
import org.apache.commons.mail.EmailAttachment;
import org.apache.commons.mail.EmailException;
import org.apache.commons.mail.HtmlEmail;
import org.apache.commons.mail.MultiPartEmail;
- 动画合集
换个号韩国红果果
htmlcss
动画 指一种样式变为另一种样式 keyframes应当始终定义0 100 过程
1 transition 制作鼠标滑过图片时的放大效果
css
.wrap{
width: 340px;height: 340px;
position: absolute;
top: 30%;
left: 20%;
overflow: hidden;
bor
- 网络最常见的攻击方式竟然是SQL注入
蓝儿唯美
sql注入
NTT研究表明,尽管SQL注入(SQLi)型攻击记录详尽且为人熟知,但目前网络应用程序仍然是SQLi攻击的重灾区。
信息安全和风险管理公司NTTCom Security发布的《2015全球智能威胁风险报告》表明,目前黑客攻击网络应用程序方式中最流行的,要数SQLi攻击。报告对去年发生的60亿攻击 行为进行分析,指出SQLi攻击是最常见的网络应用程序攻击方式。全球网络应用程序攻击中,SQLi攻击占
- java笔记2
a-john
java
类的封装:
1,java中,对象就是一个封装体。封装是把对象的属性和服务结合成一个独立的的单位。并尽可能隐藏对象的内部细节(尤其是私有数据)
2,目的:使对象以外的部分不能随意存取对象的内部数据(如属性),从而使软件错误能够局部化,减少差错和排错的难度。
3,简单来说,“隐藏属性、方法或实现细节的过程”称为——封装。
4,封装的特性:
4.1设置
- [Andengine]Error:can't creat bitmap form path “gfx/xxx.xxx”
aijuans
学习Android遇到的错误
最开始遇到这个错误是很早以前了,以前也没注意,只当是一个不理解的bug,因为所有的texture,textureregion都没有问题,但是就是提示错误。
昨天和美工要图片,本来是要背景透明的png格式,可是她却给了我一个jpg的。说明了之后她说没法改,因为没有png这个保存选项。
我就看了一下,和她要了psd的文件,还好我有一点
- 自己写的一个繁体到简体的转换程序
asialee
java转换繁体filter简体
今天调研一个任务,基于java的filter实现繁体到简体的转换,于是写了一个demo,给各位博友奉上,欢迎批评指正。
实现的思路是重载request的调取参数的几个方法,然后做下转换。
- android意图和意图监听器技术
百合不是茶
android显示意图隐式意图意图监听器
Intent是在activity之间传递数据;Intent的传递分为显示传递和隐式传递
显式意图:调用Intent.setComponent() 或 Intent.setClassName() 或 Intent.setClass()方法明确指定了组件名的Intent为显式意图,显式意图明确指定了Intent应该传递给哪个组件。
隐式意图;不指明调用的名称,根据设
- spring3中新增的@value注解
bijian1013
javaspring@Value
在spring 3.0中,可以通过使用@value,对一些如xxx.properties文件中的文件,进行键值对的注入,例子如下:
1.首先在applicationContext.xml中加入:
<beans xmlns="http://www.springframework.
- Jboss启用CXF日志
sunjing
logjbossCXF
1. 在standalone.xml配置文件中添加system-properties:
<system-properties> <property name="org.apache.cxf.logging.enabled" value=&
- 【Hadoop三】Centos7_x86_64部署Hadoop集群之编译Hadoop源代码
bit1129
centos
编译必需的软件
Firebugs3.0.0
Maven3.2.3
Ant
JDK1.7.0_67
protobuf-2.5.0
Hadoop 2.5.2源码包
Firebugs3.0.0
http://sourceforge.jp/projects/sfnet_findbug
- struts2验证框架的使用和扩展
白糖_
框架xmlbeanstruts正则表达式
struts2能够对前台提交的表单数据进行输入有效性校验,通常有两种方式:
1、在Action类中通过validatexx方法验证,这种方式很简单,在此不再赘述;
2、通过编写xx-validation.xml文件执行表单验证,当用户提交表单请求后,struts会优先执行xml文件,如果校验不通过是不会让请求访问指定action的。
本文介绍一下struts2通过xml文件进行校验的方法并说
- 记录-感悟
braveCS
感悟
再翻翻以前写的感悟,有时会发现自己很幼稚,也会让自己找回初心。
2015-1-11 1. 能在工作之余学习感兴趣的东西已经很幸福了;
2. 要改变自己,不能这样一直在原来区域,要突破安全区舒适区,才能提高自己,往好的方面发展;
3. 多反省多思考;要会用工具,而不是变成工具的奴隶;
4. 一天内集中一个定长时间段看最新资讯和偏流式博
- 编程之美-数组中最长递增子序列
bylijinnan
编程之美
import java.util.Arrays;
import java.util.Random;
public class LongestAccendingSubSequence {
/**
* 编程之美 数组中最长递增子序列
* 书上的解法容易理解
* 另一方法书上没有提到的是,可以将数组排序(由小到大)得到新的数组,
* 然后求排序后的数组与原数
- 读书笔记5
chengxuyuancsdn
重复提交struts2的token验证
1、重复提交
2、struts2的token验证
3、用response返回xml时的注意
1、重复提交
(1)应用场景
(1-1)点击提交按钮两次。
(1-2)使用浏览器后退按钮重复之前的操作,导致重复提交表单。
(1-3)刷新页面
(1-4)使用浏览器历史记录重复提交表单。
(1-5)浏览器重复的 HTTP 请求。
(2)解决方法
(2-1)禁掉提交按钮
(2-2)
- [时空与探索]全球联合进行第二次费城实验的可能性
comsci
二次世界大战前后,由爱因斯坦参加的一次在海军舰艇上进行的物理学实验 -费城实验
至今给我们大家留下很多迷团.....
关于费城实验的详细过程,大家可以在网络上搜索一下,我这里就不详细描述了
在这里,我的意思是,现在
- easy connect 之 ORA-12154: TNS: 无法解析指定的连接标识符
daizj
oracleORA-12154
用easy connect连接出现“tns无法解析指定的连接标示符”的错误,如下:
C:\Users\Administrator>sqlplus username/
[email protected]:1521/orcl
SQL*Plus: Release 10.2.0.1.0 – Production on 星期一 5月 21 18:16:20 2012
Copyright (c) 198
- 简单排序:归并排序
dieslrae
归并排序
public void mergeSort(int[] array){
int temp = array.length/2;
if(temp == 0){
return;
}
int[] a = new int[temp];
int
- C语言中字符串的\0和空格
dcj3sjt126com
c
\0 为字符串结束符,比如说:
abcd (空格)cdefg;
存入数组时,空格作为一个字符占有一个字节的空间,我们
- 解决Composer国内速度慢的办法
dcj3sjt126com
Composer
用法:
有两种方式启用本镜像服务:
1 将以下配置信息添加到 Composer 的配置文件 config.json 中(系统全局配置)。见“例1”
2 将以下配置信息添加到你的项目的 composer.json 文件中(针对单个项目配置)。见“例2”
为了避免安装包的时候都要执行两次查询,切记要添加禁用 packagist 的设置,如下 1 2 3 4 5
- 高效可伸缩的结果缓存
shuizhaosi888
高效可伸缩的结果缓存
/**
* 要执行的算法,返回结果v
*/
public interface Computable<A, V> {
public V comput(final A arg);
}
/**
* 用于缓存数据
*/
public class Memoizer<A, V> implements Computable<A,
- 三点定位的算法
haoningabc
c算法
三点定位,
已知a,b,c三个顶点的x,y坐标
和三个点都z坐标的距离,la,lb,lc
求z点的坐标
原理就是围绕a,b,c 三个点画圆,三个圆焦点的部分就是所求
但是,由于三个点的距离可能不准,不一定会有结果,
所以是三个圆环的焦点,环的宽度开始为0,没有取到则加1
运行
gcc -lm test.c
test.c代码如下
#include "stdi
- epoll使用详解
jimmee
clinux服务端编程epoll
epoll - I/O event notification facility在linux的网络编程中,很长的时间都在使用select来做事件触发。在linux新的内核中,有了一种替换它的机制,就是epoll。相比于select,epoll最大的好处在于它不会随着监听fd数目的增长而降低效率。因为在内核中的select实现中,它是采用轮询来处理的,轮询的fd数目越多,自然耗时越多。并且,在linu
- Hibernate对Enum的映射的基本使用方法
linzx0212
enumHibernate
枚举
/**
* 性别枚举
*/
public enum Gender {
MALE(0), FEMALE(1), OTHER(2);
private Gender(int i) {
this.i = i;
}
private int i;
public int getI
- 第10章 高级事件(下)
onestopweb
事件
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- 孙子兵法
roadrunners
孙子兵法
始计第一
孙子曰:
兵者,国之大事,死生之地,存亡之道,不可不察也。
故经之以五事,校之以计,而索其情:一曰道,二曰天,三曰地,四曰将,五
曰法。道者,令民于上同意,可与之死,可与之生,而不危也;天者,阴阳、寒暑
、时制也;地者,远近、险易、广狭、死生也;将者,智、信、仁、勇、严也;法
者,曲制、官道、主用也。凡此五者,将莫不闻,知之者胜,不知之者不胜。故校
之以计,而索其情,曰
- MySQL双向复制
tomcat_oracle
mysql
本文包括:
主机配置
从机配置
建立主-从复制
建立双向复制
背景
按照以下简单的步骤:
参考一下:
在机器A配置主机(192.168.1.30)
在机器B配置从机(192.168.1.29)
我们可以使用下面的步骤来实现这一点
步骤1:机器A设置主机
在主机中打开配置文件 ,
- zoj 3822 Domination(dp)
阿尔萨斯
Mina
题目链接:zoj 3822 Domination
题目大意:给定一个N∗M的棋盘,每次任选一个位置放置一枚棋子,直到每行每列上都至少有一枚棋子,问放置棋子个数的期望。
解题思路:大白书上概率那一张有一道类似的题目,但是因为时间比较久了,还是稍微想了一下。dp[i][j][k]表示i行j列上均有至少一枚棋子,并且消耗k步的概率(k≤i∗j),因为放置在i+1~n上等价与放在i+1行上,同理