基于Prompt的MLM文本分类

简介

常规NLP做文本分类时常用Transfer Learning的方式,在预训练bert上加一个分类层,哪个输出节点概率最大则划分到哪一类别。而基于Prompt的MLM文本分类是将文本分类任务转化为MLM( Masked Language Modeling)任务,通过[MASK]位置的输出来判断类别。
例如通过文本描述判定天气好坏,类别【好、坏】:

常规方式:今天阳光明媚! 【好】
基于Prompt的MLM: 天气[MASK],今天阳光明媚!【天气好,今天阳光明媚!】

Prompt的设定可以有多种方式设定,手写Prompt 、自动离散Prompt、自动连续 P-Tuning,自行查找论文

实验

先手写Prompt做个实验:
就以上面例子中的Prompt,“ 天气[MASK]+带分类文本”

import os
import logging
import datasets
import transformers
import numpy as np
from sklearn import metrics
from datasets import Dataset
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score, precision_recall_fscore_support
from transformers import Trainer, TrainingArguments, BertTokenizer, BertForMaskedLM

os.environ['CUDA_VISIBLE_DEVICES'] = '4'
transformers.set_seed(1)
logging.basicConfig(level=logging.INFO)

class LecCallTag():
    
    # 原始样本统计
    def data_show(self, data_file):
        with open(data_file, 'r', encoding='utf-8') as f:
            data = f.readlines()
        logging.info("获取数据:%s" % len(data))
        tags_data_dict = {}
        for line in data:
            text_label = line.strip().split('\t')
            if text_label[1] in tags_data_dict:
                tags_data_dict[text_label[1]].append(text_label[0])
            else:
                tags_data_dict[text_label[1]] = [text_label[0]]
        logging.info("其中,各分类数量:")
        for k, v in tags_data_dict.items():
            logging.info("%s: %s" % (k, len(v)))
        return tags_data_dict

    # 数据处理
    def data_process(self, data_file):
        with open(data_file, 'r', encoding='utf-8') as f:
            data = [line.strip().split('\t') for line in f.readlines()]  # 今天阳光明媚!	好
        text = ['天气[MASK],'+_[0] for _ in data]
        label = ['天气'+_[1]+','+_[0] for _ in data]
        return text, label
    
    # model, tokenizer
    def create_model_tokenizer(self, model_name, n_label=0):
        tokenizer = BertTokenizer.from_pretrained(model_name)
        model = BertForMaskedLM.from_pretrained(model_name)
        return tokenizer, model
    
    # 构建dataset
    def create_dataset(self, text, label, tokenizer, max_len):
        X_train, X_test, Y_train, Y_test = train_test_split(text, label, test_size=0.2, random_state=1)
        logging.info('训练集:%s条,\n测试集:%s条' %(len(X_train), len(X_test)))
        train_dict = {'text': X_train, 'label_text': Y_train}
        test_dict = {'text': X_test, 'label_text': Y_test}
        train_dataset = Dataset.from_dict(train_dict)
        test_dataset = Dataset.from_dict(test_dict)
        def preprocess_function(examples):
            text_token = tokenizer(examples['text'], padding=True,truncation=True, max_length=max_len)
            text_token['labels'] = np.array(tokenizer(examples['label_text'], padding=True,truncation=True, max_length=max_len)["input_ids"])  # 注意数据类型
            return text_token
        train_dataset = train_dataset.map(preprocess_function, batched=True)
        test_dataset = test_dataset.map(preprocess_function, batched=True)
        return train_dataset, test_dataset
        
    # 构建trainer
    def create_trainer(self, model, train_dataset, test_dataset, checkpoint_dir, batch_size):
        args = TrainingArguments(
            checkpoint_dir,
            evaluation_strategy = "epoch",
            learning_rate=2e-5,
            per_device_train_batch_size=batch_size,
            per_device_eval_batch_size=batch_size,
            num_train_epochs=15,
            weight_decay=0.01,
            load_best_model_at_end=True,
            metric_for_best_model='accuracy',
        )
        def compute_metrics(pred):
            labels = pred.label_ids[:, 3]
            preds = pred.predictions[:, 3].argmax(-1)
            precision, recall, f1, _ = precision_recall_fscore_support(labels, preds, average='weighted')
            acc = accuracy_score(labels, preds)
            return {'accuracy': acc, 'f1': f1, 'precision': precision, 'recall': recall}
        trainer = Trainer(
            model,
            args,
            train_dataset=train_dataset,
            eval_dataset=test_dataset,
            # tokenizer=tokenizer,
            compute_metrics=compute_metrics
        )
        return trainer
        
        
def main():
    lct = LecCallTag()
    data_file = '/data.txt'
    checkpoint_dir = "/checkpoint/"
    batch_size = 16
    max_len = 64
    n_label = 3
    tags_data = lct.data_show(data_file)
    text, label = lct.data_process(data_file)
    tokenizer, model = lct.create_model_tokenizer("bert-base-chinese")
    train_dataset, test_dataset = lct.create_dataset(text, label, tokenizer, max_len)
    trainer = lct.create_trainer(model, train_dataset, test_dataset, checkpoint_dir, batch_size)
    trainer.train()


if __name__ == '__main__':
    main()

实验结果

在实验数据集(自建、小样本500条)上
常规做bert-finetuning文本分类的结果:acc为84%,f1为83%
基于Prompt的MLM文本分类结果:acc为87%,f1为86%
修改Prompt,评测结果会浮动,可参考Prompt的设定方式继续优化效果

在分类文本前添加提示语,如将“今天阳关明媚!”变为“天气,今天阳光明媚!”在小样本下也可以使准确率提升!

你可能感兴趣的:(模型,NLP,自然语言处理)