- Pytorch模型安卓部署
python&java
pytorch人工智能python
Pytorch是一种流行的深度学习框架,用于算法开发,而Android是一种广泛应用的操作系统,多应用于移动设备当中。目前多数的研究都是在于算法上,个人觉得把算法落地是一件很有意思的事情,因此本人准备分享一些模型落地的文章(后续可能分享微信小程序部署,PyQt部署以及exe打包,ncnn部署,tensorRT部署,MNN部署)。本篇文章主要分享Pytorch的Android端部署。看这篇文章的读者
- yolov11转ncnn
model2005
YOLOncnn
yolo模型pt格式文件转ncnn,以适用于移动端的部署。原先要经过onnx,onnxsim等转换,cmake编译,现直接可生成(如何从YOLO11导出到NCNN以便顺利部署)。fromultralyticsimportYOLO#LoadtheYOLO11modelmodel=YOLO("yolo11s.pt")#ExportthemodeltoNCNNformatmodel.export(for
- Real-ESRGAN-ncnn-vulkan 使用教程
陶名战Blanche
Real-ESRGAN-ncnn-vulkan使用教程项目地址:https://gitcode.com/gh_mirrors/re/Real-ESRGAN-ncnn-vulkan1.项目介绍Real-ESRGAN-ncnn-vulkan是基于NCNN框架实现的Real-ESRGAN算法,旨在开发适用于一般图像恢复的实用算法。该项目特别优化了对动漫图像的处理。Real-ESRGAN通过纯合成数据训练
- 算法在嵌入式端的部署与优化
早日退休!!!
硬件算法嵌入式硬件
算法在嵌入式端的部署与优化前言理论1.参考资源2.其他1.将深度学习模型移植到嵌入式端时,提高推理速度的方法2.深度学习模型移植到嵌入式端的主要流程3.假设将已经训练好的目标检测模型(比如YOLOv3)移植到树莓派4B这样一款嵌入式设备上,并且需要保证推理速度达到实时。具体流程如下4.在树莓派上使用ncnn推理引擎,可以采取以下措施提高推理速度5.先进行模型压缩再用推理模型部署是一种常见的深度学习
- TaTa - 图片和视频高清修复工具 / 音频提取
希希分享
软希网58soho_cn软件资源图片和视频高清修复工具
TaTa-图片和视频高清修复工具/音频提取由论坛大佬@WawaLee3开发的图片和视频高清修复工具「TaTa」据介绍是采用开源模型Real-ESRGAN-ncnn-vulkan,视频的修复功能有限,比较吃配置。另外建议不要安装在C盘,配置通义千问的ak时,写配置可能会出现权限问题。功能介绍批量图片高清修复视频高清修复文件管理小工具(文件提级/批量重命名)音视频工具(音频提取/视频格式转换/FFmp
- 【“星睿 O6”AI PC 开发套件评测】ncnn 安装+Benchmark+大模型解读测评数据
极术社区
开发板测评人工智能
编译ncnn的编译安装官方仓库提供的教程还是蛮详细的,这里笔者参考RaspberryPi编译的教程提供在radxao6板子上的完整编译命令gitclonehttps://github.com/Tencent/ncnn.gitcdncnngitsubmoduleupdate--initsudoaptinstallbuild-essentialgitcmakelibprotobuf-devprotob
- 【sklearn 04】DNN、CNN、RNN
@金色海岸
sklearndnncnn
DNNDNN(DeepNeuralNetworks,深度神经网络)是一种相对浅层机器学习模型具有更多参数,需要更多数据进行训练的机器学习算法CNNCNN(convolutionalNeuralNetworks,卷积神经网络)是一种从局部特征开始学习并逐渐整合的神经网络。卷积神经网络通过卷积层来进行特征提取,通过池化层进行降维,相比较全连接的神经网络,卷积神经网络降低了模型复杂度,减少了模型的参数,
- 【大模型开发】大模型转换为 NCNN 格式并在 微信小程序 中进行调用
云博士的AI课堂
大模型技术开发与实践哈佛博后带你玩转机器学习深度学习微信小程序小程序NCNN小程序调用大模型大模型部署大模型优化部署微信小程序
以下内容将介绍如何将大模型转换为NCNN格式并在微信小程序中进行调用。我们会从整体流程、模型转换工具、NCNNWebAssembly(WASM)编译与集成、小程序前端代码示例等方面进行详细讲解,并在最后给出优化方向与未来建议。目录背景与整体流程概述准备工作2.1常见模型格式与转换思路2.2环境与工具安装模型转换为NCNN格式3.1以ONNX模型为例3.2使用onnx2ncnn工具NCNN在微信小程
- PyTorch模型安卓部署流程(NCNN)全流程实战(2)代码详细解析
咕咕学不会咋办
pytorchandroidpython
代码来源PyTorch模型安卓部署流程(NCNN)全流程实战(1)至于为什么要备注,因为我基础不好,就得一点一点来适合和我一样的慢羊羊学习项目整体结构1.布局文件不解析了比较简单最简单的线性布局main.xml2.资源文件string.xmlsqueezencnn在Android开发中,资源文件(通常以.xml结尾)用于定义静态内容,如字符串、颜色、尺寸等。res/values/strings.x
- cnn以及例子
阿拉斯攀登
机器学习cnn人工智能神经网络
cnnCNN即卷积神经网络(ConvolutionalNeuralNetwork),是一种专门为处理具有网格结构数据(如图像、音频)而设计的深度学习模型,在计算机视觉、语音识别等诸多领域都有广泛应用。以下是CNN的详细介绍:基本原理卷积层:是CNN的核心组成部分,通过卷积核在数据上滑动进行卷积操作,自动提取数据中的局部特征。例如,在处理图像时,卷积核可以检测图像中的边缘、线条等简单特征。卷积操作大
- 2025年最新在线模型转换工具优化模型ncnn,mnn,tengine,onnx
我的青春不太冷
mnn人工智能深度学习ncnn在线模型转换网址
文章目录引言最新网址地点一、模型转换1.框架转换全景图2.安全的模型转换3.网站全景图二、转换说明三、模型转换流程图四、感谢引言在yolov5,yolov8,yolov11等等模型转换的领域中,时间成本常常是开发者头疼的问题。最近发现一个超棒的网站工具,简直是模型转换的神器。它最大的亮点就是省去编译转换工具的时间,开箱即用,一键转换。对于目标格式,提供了tengine、ncnn、mnn、onnx等
- Lite.Ai.ToolKit - 一个轻量级的 C++ 工具包
小众AI
AI开源开源人工智能AI编程算法
**Lite.Ai.ToolKit**:一个轻量级的C++工具包,包含100+个很棒的AI模型,例如对象检测、人脸检测、人脸识别、分割、遮罩等。请参阅ModelZoo和ONNXHub、MNNHub、TNNHub、NCNNHub。3700Stars711Forks0Issues6贡献者GPL-3.0LicenseC语言代码:https://github.com/DefTruth/lite.ai.to
- 深入解析ncnn::Net类——高效部署神经网络的核心组件
又吹风_Bassy
人工智能深度学习ncnnncnnNetncnn使用示例
最近在学习ncnn推理框架,下面整理了ncnn::Net的使用方法。在移动端和嵌入式设备上进行高效的神经网络推理,要求框架具备轻量化、高性能以及灵活的扩展能力。作为腾讯开源的高性能神经网络推理框架,ncnn在这些方面表现出色。而在ncnn的核心组件中,ncnn::Net类扮演了至关重要的角色。本文将详细介绍ncnn::Net类的结构、功能及其使用方法,帮助开发者更好地理解和利用这一强大的工具。目录
- NCNN推理
呆呆珝
推理框架c++人工智能
1.前言ncnn是一个高性能的神经网络前向计算框架,专门针对移动设备和嵌入式设备设计。它由腾讯优图实验室开发,旨在提供高效的神经网络推理能力,特别是在资源受限的环境中,如智能手机和嵌入式系统。ncnn被广泛应用于移动端和嵌入式设备上的各种深度学习应用,包括但不限于:图像分类/目标检测/语义分割/人脸识别/图像生成与处理2.NCNN的CMakeLists.txt编写ncnn的头文件,链接文件,静态链
- CNN+LSTM+AM研究方向初尝试
qzhqbb
勇闯学术圈机器学习cnnlstm人工智能笔记
CNN+LSTM+AM研究方向初尝试简单介绍CNNCNN的基本结构卷积层(ConvolutionalLayer):该层通过卷积操作提取输入数据的特征。卷积操作使用多个卷积核(滤波器)对输入图像进行局部感知,从而识别出边缘、纹理等基本特征。卷积层的输出称为特征图(FeatureMap)。激活层(ActivationLayer):常用的激活函数包括ReLU(线性整流单元),用于引入非线性,使网络能够学
- yolov5>onnx>ncnn>apk
图像处理大大大大大牛啊
opencv实战代码讲解yoloonnxncnn安卓
一.yolov5pt模型转onnx条件:colabnotebookyolov51.安装环境!pipinstallonnx>=1.7.0#forONNXexport!pipinstallcoremltools==4.0#forCoreMLexport!pipinstallonnx-simplifier2.修改common.py在classFocus下面
- MTCNN训练
迷若烟雨
人脸识别tensorflow深度学习caffe
MTCNN是当前效果最好的开源人脸检测算法之一,作者只提供了训练好的模型以及matlab部署代码,其训练和优化却没有放出来,引发了很多好事者复现如果只是要部署的话可以使用MTCNN,其提供了部署全平台实现,包括C++、python、ncnn和tensorflow,还有加速版本和opencv直接加载版本,是所有版本中的集大成者如果想了解算法原理,可以参考MTCNN_Step_by_Step本文的训练
- 170基于matlab的DNCNN图像降噪
顶呱呱程序
matlab工程应用matlab开发语言图像降噪处理DNCNN
基于matlab的DNCNN图像降噪,网络分为三部分,第一部分为Conv+Relu(一层),第二部分为Conv+BN+Relu(若干层),第三部分为Conv(一层),网络层数为17或者20层。网络学习的是图像残差,也就是带噪图像和无噪图像差值,损失函数采用的MSE。程序已调通,可直接运行。170matlabDNCNN图像降噪处理(xiaohongshu.com)
- orbslam_semantic_nav_ros 编译出现的问题1
sugarkss
计算机视觉机器人
安装环境ubuntu20.04rosNODES项目链接:https://github.com/MRwangmaomao/semantic_slam_nav_ros安装腾讯ncnn库其他库opencv3.4.9eigen3.4.0pangolin已安装vtk5自带的是vtk-7.1建议自己源码安装下载链接:https://vtk.org/download/下载了vtk7.1mkdirbuildcdb
- 基于轻量级模型YOLOX-Nano的菜品识别系统
钟良堂
笔记深度学习目标检测yolox-nano菜品识别
工程Gitee地址:https://gitee.com/zhong-liangtang/ncnn-android-yolox-nano一、YOLOX简介YOLOX是一个在2021年被旷视科技公司提出的高性能且无锚框(Anchor-free)的检测器,在YOLO系列的基础上吸收近年来目标检测学术界的最新成果,如解耦头(DecoupledHead)、数据增强、无锚框、标签分配策略SimOTA(Simp
- 智慧自助餐饮系统(SpringBoot+MP+Vue+微信小程序+JNI+ncnn+YOLOX-Nano)
钟良堂
笔记springbootvue.js微信小程序目标检测跨域问题
一、项目简介本项目是配合智慧自助餐厅下的一套综合系统,该系统分为安卓端、微信小程序用户端以及后台管理系统。安卓端利用图像识别技术进行识别多种不同菜品,识别成功后安卓端显示该订单菜品以及价格并且生成进入小程序的二维码,用户扫描后在小程序进行付款和提交订单,用户也可查看订单和菜品等信息,管理员在Web后台管理系统进行信息查看餐厅运营情况和管理菜品、订单评价等信息。本系统涉及的论文文献,可以进行参考和引
- caffez转ncnn,及环境配置
宁静深远
软件安装
一、安装ncnn1、安装protobuf(a)、gitclonehttps://github.com/google/protobuf(b)、自动生成configure配置文件,运行:./autogen.sh(c)、配置环境:./configure(d)、编译源代码:make(e)、安装:sudomakeinstall(f)、刷新动态库:sudoldconfig2、安装ncnn(a)、mkdirco
- OPENGL NCNN GPU零拷贝实现
陈立里
ncnn
概要OPENGL拿到的相机帧,通过有拷贝的方式进行GPU推理CPU占用率太高,而NCNN没有提供OPENGL零拷贝GPU推理的接口,因此只能自己实现整体流程主要方法是使用AndroidHardwareBuffer实现纹理的共享,在OPENGL上对相机数据进行预处理后,将纹理信息写入到AndroidHardwareBuffer,随后在vulkan上进行转格式,最后使用NCNN的GPU推理,实现GPU
- NCNN GPU初始化加速——cache实现
陈立里
ncnn
概要NCNN的CPU初始化速度很快,但是当使用GPU进行推理时,初始化往往要花费几秒甚至更长时间。其他框架例如MNN有载入cache的方式来进行加速,NCNN目前没有相关接口来实现加速,那么NCNN是否也可以加载cache来实现加速呢?整体流程通过测速以及查看NCNN的源码可以发现,在gpu.cpp源文件下的VulkanDevice::create_pipeline函数内的vkCreateComp
- PyTorch、NCNN、Numpy三者张量的shape
六五酥
pytorchnumpy人工智能
目录一、PyTorch二、NCNN三、Numpy一、PyTorch在PyTorch中,张量(Tensor)的形状通常按照(N,C,H,W)的顺序排列,其中:N是批量大小(batchsize)C是通道数(channelnumber)H是高度(height)W是宽度(width)例如,如果你有一个形状为(32,3,64,64)的张量,那么你有32个图像,每个图像有3个通道(例如RGB),每个通道的高度
- 在树莓派下使用NCNN部署YOLOv5-lite
TTao9
神经网络部署yolov5linux深度学习
在树莓派下使用NCNN部署YOLOv5-lite前置的开发环境操作可以先看这篇文章:树莓派下部署NCNN_树莓派部署神经网络我这里的yolov5-lite的param文件和bin文件是参考这个github项目,里面作者有在coco数据集上训练好的yolov5-lite的param文件和bin文件,需要训练自己的数据集的可以按照github教程来做。我下载了yolov5-lite_e的版本,以这个为
- 目标检测:PC端MobileNetSSD通过Ncnn前向推理框架之实现
宝坚刘炜
我的最终目标是将MobileNetSSD部署到Anroid设备端,考虑到运行效率,采用了NCNN前向推理来实现,下面将在PC端的实现过程和大家分享下,欢迎讨论。一、前提1、在ubuntu系统下安装caffe-ssd,这一过程不清楚的地方可以参考我之前的一篇文章,也可以参考下面链接的文章:https://blog.csdn.net/qq_33431368/article/details/848661
- 手写数字识别从训练到部署全流程详解——模型在Android端的部署
彧侠
综述:目前深度学习模型在移动端的使用已越来越广泛,而移动端设备的性能表现自然无法与PC端相提并论,目前市面上基本所有的训练框架训练出来的模型都无法直接在移动端上使用和推理,尽管部分框架同时做了移动端部署功能(如Tensorflow-lite、pytorch-mobile等),但是在性能表现上对比专业的部署框架(如ncnn、mnn等)没有任何优势,基于之前对部署框架的使用经验,下面我就以手写数字识别
- 【XR806开发板试用】在 xr806 上用 ncnn 跑神经网络 mnist
极术社区
开发板测评神经网络人工智能深度学习
在xr806上用ncnn跑神经网络mnist0x0介绍xr806和ncnnhttps://xr806.docs.aw-ol.com/XR806是全志科技旗下子公司广州芯之联研发设计的一款支持WiFi和BLE的高集成度无线MCU芯片,支持鸿蒙L0系统https://github.com/Tencent/ncnnncnn是腾讯开源的高性能神经网络推理框架,无第三方依赖,跨平台,具备非常好的可移植性,允
- 1.24CNN(基本框架),RNN(简单RNN,LSTM,GRU简要)两个参考论文
CQU_JIAKE
机器学习&神经网络cnn深度学习神经网络
目录CNNRNN3种RNN模型简单RNNLSTM(长短期记忆模型)GRU参考论文CNNCNN是卷积神经网络提取图片特征、在输出阶段可以使用sigmoid函数返回01值RNN3种RNN模型简单RNNH就是每层神经元所产生的一个输出信号,输出层产生的信号经过输出函数转化为最终输出随着循环次数的增加就是说简单的RNN模型容易导致梯度消失以及梯度爆炸的问题整体框架类似于数电里的状态机、时序逻辑电路LSTM
- Spring的注解积累
yijiesuifeng
spring注解
用注解来向Spring容器注册Bean。
需要在applicationContext.xml中注册:
<context:component-scan base-package=”pagkage1[,pagkage2,…,pagkageN]”/>。
如:在base-package指明一个包
<context:component-sc
- 传感器
百合不是茶
android传感器
android传感器的作用主要就是来获取数据,根据得到的数据来触发某种事件
下面就以重力传感器为例;
1,在onCreate中获得传感器服务
private SensorManager sm;// 获得系统的服务
private Sensor sensor;// 创建传感器实例
@Override
protected void
- [光磁与探测]金吕玉衣的意义
comsci
这是一个古代人的秘密:现在告诉大家
信不信由你们:
穿上金律玉衣的人,如果处于灵魂出窍的状态,可以飞到宇宙中去看星星
这就是为什么古代
- 精简的反序打印某个数
沐刃青蛟
打印
以前看到一些让求反序打印某个数的程序。
比如:输入123,输出321。
记得以前是告诉你是几位数的,当时就抓耳挠腮,完全没有思路。
似乎最后是用到%和/方法解决的。
而今突然想到一个简短的方法,就可以实现任意位数的反序打印(但是如果是首位数或者尾位数为0时就没有打印出来了)
代码如下:
long num, num1=0;
- PHP:6种方法获取文件的扩展名
IT独行者
PHP扩展名
PHP:6种方法获取文件的扩展名
1、字符串查找和截取的方法
1
$extension
=
substr
(
strrchr
(
$file
,
'.'
), 1);
2、字符串查找和截取的方法二
1
$extension
=
substr
- 面试111
文强chu
面试
1事务隔离级别有那些 ,事务特性是什么(问到一次)
2 spring aop 如何管理事务的,如何实现的。动态代理如何实现,jdk怎么实现动态代理的,ioc是怎么实现的,spring是单例还是多例,有那些初始化bean的方式,各有什么区别(经常问)
3 struts默认提供了那些拦截器 (一次)
4 过滤器和拦截器的区别 (频率也挺高)
5 final,finally final
- XML的四种解析方式
小桔子
domjdomdom4jsax
在平时工作中,难免会遇到把 XML 作为数据存储格式。面对目前种类繁多的解决方案,哪个最适合我们呢?在这篇文章中,我对这四种主流方案做一个不完全评测,仅仅针对遍历 XML 这块来测试,因为遍历 XML 是工作中使用最多的(至少我认为)。 预 备 测试环境: AMD 毒龙1.4G OC 1.5G、256M DDR333、Windows2000 Server
- wordpress中常见的操作
aichenglong
中文注册wordpress移除菜单
1 wordpress中使用中文名注册解决办法
1)使用插件
2)修改wp源代码
进入到wp-include/formatting.php文件中找到
function sanitize_user( $username, $strict = false
- 小飞飞学管理-1
alafqq
管理
项目管理的下午题,其实就在提出问题(挑刺),分析问题,解决问题。
今天我随意看下10年上半年的第一题。主要就是项目经理的提拨和培养。
结合我自己经历写下心得
对于公司选拔和培养项目经理的制度有什么毛病呢?
1,公司考察,选拔项目经理,只关注技术能力,而很少或没有关注管理方面的经验,能力。
2,公司对项目经理缺乏必要的项目管理知识和技能方面的培训。
3,公司对项目经理的工作缺乏进行指
- IO输入输出部分探讨
百合不是茶
IO
//文件处理 在处理文件输入输出时要引入java.IO这个包;
/*
1,运用File类对文件目录和属性进行操作
2,理解流,理解输入输出流的概念
3,使用字节/符流对文件进行读/写操作
4,了解标准的I/O
5,了解对象序列化
*/
//1,运用File类对文件目录和属性进行操作
//在工程中线创建一个text.txt
- getElementById的用法
bijian1013
element
getElementById是通过Id来设置/返回HTML标签的属性及调用其事件与方法。用这个方法基本上可以控制页面所有标签,条件很简单,就是给每个标签分配一个ID号。
返回具有指定ID属性值的第一个对象的一个引用。
语法:
&n
- 励志经典语录
bijian1013
励志人生
经典语录1:
哈佛有一个著名的理论:人的差别在于业余时间,而一个人的命运决定于晚上8点到10点之间。每晚抽出2个小时的时间用来阅读、进修、思考或参加有意的演讲、讨论,你会发现,你的人生正在发生改变,坚持数年之后,成功会向你招手。不要每天抱着QQ/MSN/游戏/电影/肥皂剧……奋斗到12点都舍不得休息,看就看一些励志的影视或者文章,不要当作消遣;学会思考人生,学会感悟人生
- [MongoDB学习笔记三]MongoDB分片
bit1129
mongodb
MongoDB的副本集(Replica Set)一方面解决了数据的备份和数据的可靠性问题,另一方面也提升了数据的读写性能。MongoDB分片(Sharding)则解决了数据的扩容问题,MongoDB作为云计算时代的分布式数据库,大容量数据存储,高效并发的数据存取,自动容错等是MongoDB的关键指标。
本篇介绍MongoDB的切片(Sharding)
1.何时需要分片
&nbs
- 【Spark八十三】BlockManager在Spark中的使用场景
bit1129
manager
1. Broadcast变量的存储,在HttpBroadcast类中可以知道
2. RDD通过CacheManager存储RDD中的数据,CacheManager也是通过BlockManager进行存储的
3. ShuffleMapTask得到的结果数据,是通过FileShuffleBlockManager进行管理的,而FileShuffleBlockManager最终也是使用BlockMan
- yum方式部署zabbix
ronin47
yum方式部署zabbix
安装网络yum库#rpm -ivh http://repo.zabbix.com/zabbix/2.4/rhel/6/x86_64/zabbix-release-2.4-1.el6.noarch.rpm 通过yum装mysql和zabbix调用的插件还有agent代理#yum install zabbix-server-mysql zabbix-web-mysql mysql-
- Hibernate4和MySQL5.5自动创建表失败问题解决方法
byalias
J2EEHibernate4
今天初学Hibernate4,了解了使用Hibernate的过程。大体分为4个步骤:
①创建hibernate.cfg.xml文件
②创建持久化对象
③创建*.hbm.xml映射文件
④编写hibernate相应代码
在第四步中,进行了单元测试,测试预期结果是hibernate自动帮助在数据库中创建数据表,结果JUnit单元测试没有问题,在控制台打印了创建数据表的SQL语句,但在数据库中
- Netty源码学习-FrameDecoder
bylijinnan
javanetty
Netty 3.x的user guide里FrameDecoder的例子,有几个疑问:
1.文档说:FrameDecoder calls decode method with an internally maintained cumulative buffer whenever new data is received.
为什么每次有新数据到达时,都会调用decode方法?
2.Dec
- SQL行列转换方法
chicony
行列转换
create table tb(终端名称 varchar(10) , CEI分值 varchar(10) , 终端数量 int)
insert into tb values('三星' , '0-5' , 74)
insert into tb values('三星' , '10-15' , 83)
insert into tb values('苹果' , '0-5' , 93)
- 中文编码测试
ctrain
编码
循环打印转换编码
String[] codes = {
"iso-8859-1",
"utf-8",
"gbk",
"unicode"
};
for (int i = 0; i < codes.length; i++) {
for (int j
- hive 客户端查询报堆内存溢出解决方法
daizj
hive堆内存溢出
hive> select * from t_test where ds=20150323 limit 2;
OK
Exception in thread "main" java.lang.OutOfMemoryError: Java heap space
问题原因: hive堆内存默认为256M
这个问题的解决方法为:
修改/us
- 人有多大懒,才有多大闲 (评论『卓有成效的程序员』)
dcj3sjt126com
程序员
卓有成效的程序员给我的震撼很大,程序员作为特殊的群体,有的人可以这么懒, 懒到事情都交给机器去做 ,而有的人又可以那么勤奋,每天都孜孜不倦得做着重复单调的工作。
在看这本书之前,我属于勤奋的人,而看完这本书以后,我要努力变成懒惰的人。
不要在去庞大的开始菜单里面一项一项搜索自己的应用程序,也不要在自己的桌面上放置眼花缭乱的快捷图标
- Eclipse简单有用的配置
dcj3sjt126com
eclipse
1、显示行号 Window -- Prefences -- General -- Editors -- Text Editors -- show line numbers
2、代码提示字符 Window ->Perferences,并依次展开 Java -> Editor -> Content Assist,最下面一栏 auto-Activation
- 在tomcat上面安装solr4.8.0全过程
eksliang
Solrsolr4.0后的版本安装solr4.8.0安装
转载请出自出处:
http://eksliang.iteye.com/blog/2096478
首先solr是一个基于java的web的应用,所以安装solr之前必须先安装JDK和tomcat,我这里就先省略安装tomcat和jdk了
第一步:当然是下载去官网上下载最新的solr版本,下载地址
- Android APP通用型拒绝服务、漏洞分析报告
gg163
漏洞androidAPP分析
点评:记得曾经有段时间很多SRC平台被刷了大量APP本地拒绝服务漏洞,移动安全团队爱内测(ineice.com)发现了一个安卓客户端的通用型拒绝服务漏洞,来看看他们的详细分析吧。
0xr0ot和Xbalien交流所有可能导致应用拒绝服务的异常类型时,发现了一处通用的本地拒绝服务漏洞。该通用型本地拒绝服务可以造成大面积的app拒绝服务。
针对序列化对象而出现的拒绝服务主要
- HoverTree项目已经实现分层
hvt
编程.netWebC#ASP.ENT
HoverTree项目已经初步实现分层,源代码已经上传到 http://hovertree.codeplex.com请到SOURCE CODE查看。在本地用SQL Server 2008 数据库测试成功。数据库和表请参考:http://keleyi.com/a/bjae/ue6stb42.htmHoverTree是一个ASP.NET 开源项目,希望对你学习ASP.NET或者C#语言有帮助,如果你对
- Google Maps API v3: Remove Markers 移除标记
天梯梦
google maps api
Simply do the following:
I. Declare a global variable:
var markersArray = [];
II. Define a function:
function clearOverlays() {
for (var i = 0; i < markersArray.length; i++ )
- jQuery选择器总结
lq38366
jquery选择器
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
- 基础数据结构和算法六:Quick sort
sunwinner
AlgorithmQuicksort
Quick sort is probably used more widely than any other. It is popular because it is not difficult to implement, works well for a variety of different kinds of input data, and is substantially faster t
- 如何让Flash不遮挡HTML div元素的技巧_HTML/Xhtml_网页制作
刘星宇
htmlWeb
今天在写一个flash广告代码的时候,因为flash自带的链接,容易被当成弹出广告,所以做了一个div层放到flash上面,这样链接都是a触发的不会被拦截,但发现flash一直处于div层上面,原来flash需要加个参数才可以。
让flash置于DIV层之下的方法,让flash不挡住飘浮层或下拉菜单,让Flash不档住浮动对象或层的关键参数:wmode=opaque。
方法如下:
- Mybatis实用Mapper SQL汇总示例
wdmcygah
sqlmysqlmybatis实用
Mybatis作为一个非常好用的持久层框架,相关资料真的是少得可怜,所幸的是官方文档还算详细。本博文主要列举一些个人感觉比较常用的场景及相应的Mapper SQL写法,希望能够对大家有所帮助。
不少持久层框架对动态SQL的支持不足,在SQL需要动态拼接时非常苦恼,而Mybatis很好地解决了这个问题,算是框架的一大亮点。对于常见的场景,例如:批量插入/更新/删除,模糊查询,多条件查询,联表查询,