深度学习推荐系统学习——传统推荐模型

参考书籍:深度学习推荐系统(博文视点出品)

传统推荐模型的特点总结
模型名称 基本原理 特点 局限性
协同过滤 根据用户的行为历史生成用户-物品共现矩阵,利用用户相似性和物品相似性进行推荐 原理简单、直接,应用广泛 泛化能力差,处理稀疏矩阵的能力差,推荐结果的头部效应明显
矩阵分解 将协同过滤算法中的共现矩阵分解为用户矩阵和物品矩阵,利用用户隐向量和物品隐向量的内积进行排序并推荐 相较协同过滤,泛华能力有所加强,对稀疏矩阵的处理能力有所加强 除了用户历史行为数据,难以利用其他用户、物品特征及上下文特征
逻辑回归 将推荐问题转换成类似CTR预估的二分类问题,将用户、物品、上下文等不同特征转换成特征向量,输入逻辑回归模型得到CTR,再按照预估CTR进行排序并推荐 能够融合多种类型的不同特征 模型不具备特征组合的能力,表达能力较差
FM(因子分解机) 在逻辑回归的基础上,在模型中加入二阶特征交叉部分,为每一维特征训练得到相应特征隐向量,通过隐向量间的内积运算得到交叉特征权重 相比逻辑回归,具备了二队特征交叉能力,模型的表达能力增强 由于组合爆炸问题的限制,模型不易扩展到三阶特征交叉阶段
FFM 在FM模型的基础上,加入“特征域”的概念,使用每个特征在与不同域的特征交叉时采用不同的隐向量 相比FM,进一步加强了特征交叉的能力 模型的训练开销达到了O(n^{2})的量级,训练开销较大
GBDT+LR 利用GBDT进行“自动化”的特征组合,将原始特征向量转换成离散型特征向量,并输入逻辑回归模型,进行最终的CTR预估 特征工程模型化,使模型具备了更高阶特征组合的能力 GBDT无法进行完全并行的训练,更新所需的训练时长较长
LS-PLM 首先对样本进行"分片",在每个“分片”内部构建逻辑回归模型,将每个样本的各“分片”概率与逻辑回归的得分进行加权平均,得到最终的预估值 模型结构类似三层神经网络,具备了较强的表达能力 模型结构相比深度学习模型仍比较简单,有进一步提高的空间

你可能感兴趣的:(人工智能,深度学习,人工智能)