优化方法理论合集(6)——多变量问题

目录

  • 1. 问题描述
  • 2. 解题步骤
  • 3. 例题

多变量优化问题应该是在高阶导问题(看这里优化方法理论合集(2)——高阶导问题)之后更新的,由于笔者失误,特在此补充。所幸不影响之前优化方法的理解与学习。

1. 问题描述

多变量问题描述的是关于质点在 n n n维空间中坐标的问题。

给出如下条件:

  1. 时间区间
    t ∈ [ t 0 , t k ] t \in \left[ t_0, t_k \right] t[t0,tk]
  2. 系统有 2 n 2n 2n个边界条件:
    S t a r t = { x 1 ( t 0 ) = x 10 x 2 ( t 0 ) = x 20 ⋮ x n ( t 0 ) = x n 0 Start = \begin{cases} x_1(t_0) = x_{10} \\ x_2(t_0) = x_{20} \\ \vdots \\ x_n(t_0) = x_{n0} \end{cases} Start=x1(t0)=x10x2(t0)=x20xn(t0)=xn0 E n d = { x 1 ( t k ) = x 1 k x 2 ( t k ) = x 2 k ⋮ x n ( t k ) = x n k End = \begin{cases} x_1(t_k) = x_{1k} \\ x_2(t_k) = x_{2k} \\ \vdots \\ x_n(t_k) = x_{nk} \end{cases} End=x1(tk)=x1kx2(tk)=x2kxn(tk)=xnk
  3. 性能指标(拉格朗日形式):
    J = ∫ t 0 t k F ( t , x 1 , x ˙ 1 , x 2 , x ˙ 2 , ⋯   , x n , x ˙ n ) d t → e x t r . J = \int _{t_0} ^{t_k} F \left( t, x_1, \dot x_1, x_2, \dot x_2, \cdots, x_n, \dot x_n \right) dt \rightarrow extr. J=t0tkF(t,x1,x˙1,x2,x˙2,,xn,x˙n)dtextr.

2. 解题步骤

写出解题的必要条件
{ F x 1 − d d t F x ˙ 1 = 0 F x 2 − d d t F x ˙ 2 = 0 ⋮ F x n − d d t F x ˙ n = 0 (1) \begin{cases} F_{x_1} - \frac{d}{dt} F _{\dot x_1} = 0 \\ F_{x_2} - \frac{d}{dt} F _{\dot x_2} = 0 \\ \vdots \\ F_{x_n} - \frac{d}{dt} F _{\dot x_n} = 0 \tag{1} \end{cases} Fx1dtdFx˙1=0Fx2dtdFx˙2=0FxndtdFx˙n=0(1)对每个 F i F_i Fi列出欧拉方程

与之前所提的不同,极值存在的充分条件不再是勒让德条件,而是盖西条件
H = ∣ ∂ 2 F ∂ x ˙ 1 x ˙ 1 ∂ 2 F ∂ x ˙ 1 x ˙ 2 ⋯ ∂ 2 F ∂ x ˙ 1 x ˙ n ∂ 2 F ∂ x ˙ 2 x ˙ 1 ∂ 2 F ∂ x ˙ 2 x ˙ 2 ⋯ ∂ 2 F ∂ x ˙ 2 x ˙ n ⋮ ⋮ ⋯ ⋮ ∂ 2 F ∂ x ˙ n x ˙ 1 ∂ 2 F ∂ x ˙ n x ˙ 2 ⋯ ∂ 2 F ∂ x ˙ n x ˙ n ∣ (2) H = \left| \begin{matrix} \frac{\partial ^2 F}{\partial \dot x_1 \dot x _1} & \frac{\partial ^2 F}{\partial \dot x_1 \dot x _2} & \cdots & \frac{\partial ^2 F}{\partial \dot x_1 \dot x _n} \\ \frac{\partial ^2 F}{\partial \dot x_2 \dot x _1} & \frac{\partial ^2 F}{\partial \dot x_2 \dot x _2} & \cdots & \frac{\partial ^2 F}{\partial \dot x_2 \dot x _n} \\ \vdots & \vdots & \cdots & \vdots \\ \frac{\partial ^2 F}{\partial \dot x_n \dot x _1} & \frac{\partial ^2 F}{\partial \dot x_n \dot x _2} & \cdots & \frac{\partial ^2 F}{\partial \dot x_n \dot x _n} \\ \end{matrix} \right| \tag{2} H=x˙1x˙12Fx˙2x˙12Fx˙nx˙12Fx˙1x˙22Fx˙2x˙22Fx˙nx˙22Fx˙1x˙n2Fx˙2x˙n2Fx˙nx˙n2F(2)同时有
{ 若 H > 0 , 则 J → m i n 若 H < 0 , 则 J → m a x \begin{cases} 若H > 0,则J \rightarrow min \\ 若H < 0,则J \rightarrow max \end{cases} {H>0JminH<0Jmax

3. 例题

给出如下条件:

  1. 时间区间
    t ∈ [ 0 , T ] t \in \left[ 0, T \right] t[0,T]
  2. 边界条件
    S t a r t = { x 1 ( 0 ) = x 10 x 2 ( 0 ) = x 20 Start = \begin{cases} x_1(0) = x_{10} \\ x_2(0) = x_{20} \end{cases} Start={x1(0)=x10x2(0)=x20 E n d = { x 1 ( T ) = x 1 k x 2 ( T ) = x 2 k End = \begin{cases} x_1(T) = x_{1k} \\ x_2(T) = x_{2k} \end{cases} End={x1(T)=x1kx2(T)=x2k
  3. 性能指标
    J = ∫ 0 T ( x ˙ 1 2 + x ˙ 2 2 + 2 x 1 x 2 ) d t → e x t r . J = \int _0 ^T \left( \dot x_1^2 + \dot x_2^2 + 2x_1 x_2 \right) dt \rightarrow extr. J=0T(x˙12+x˙22+2x1x2)dtextr.
    □ \square \quad F = x ˙ 1 2 + x ˙ 2 2 + 2 x 1 x 2 F = \dot x_1^2 + \dot x_2^2 + 2x_1 x_2 F=x˙12+x˙22+2x1x2代入欧拉方程组(1)有
    { F x 1 − d d t F x ˙ 1 = 0 ⟹ 2 x 2 − 2 x ¨ 1 = 0 F x 2 − d d t F x ˙ 2 = 0 ⟹ 2 x 1 − 2 x ¨ 2 = 0 \begin{cases} F_{x_1} - \frac{d}{dt} F_{\dot x_1} = 0 \Longrightarrow 2x_2 - 2 \ddot x_1 = 0 \\ F_{x_2} - \frac{d}{dt} F_{\dot x_2} = 0 \Longrightarrow 2x_1 - 2 \ddot x_2 = 0 \end{cases} {Fx1dtdFx˙1=02x22x¨1=0Fx2dtdFx˙2=02x12x¨2=0解出
    x 2 ( t ) = C 1 e t + C 2 e − t + C 3 e i t + C 4 e − i t , x 1 ( t ) = x ¨ 2 ( t ) = C 1 e t + C 2 e − t − C 3 e i t + C 4 e − i t x_2(t) = C_1 e^t + C_2 e^{-t} + C_3 e^{it} + C_4 e^{-it}, \\ x_1 (t) = \ddot x_2 (t) = C_1 e^t + C_2 e^{-t} - C_3 e^{it} + C_4 e^{-it} x2(t)=C1et+C2et+C3eit+C4eit,x1(t)=x¨2(t)=C1et+C2etC3eit+C4eit代入初始条件值即可算出 C i C_i Ci

又因为
H = ∣ ∂ 2 F ∂ x ˙ 1 ∂ x ˙ 1 ∂ 2 F ∂ x ˙ 1 ∂ x ˙ 2 ∂ 2 F ∂ x ˙ 2 ∂ x ˙ 1 ∂ 2 F ∂ x ˙ 2 ∂ x ˙ 2 ∣ = ∣ 2 0 0 2 ∣ = 4 > 0 H = \left| \begin{matrix} \frac{\partial ^2 F}{\partial \dot x_1 \partial \dot x_1} & \frac{\partial ^2 F}{\partial \dot x_1 \partial \dot x_2} \\ \frac{\partial ^2 F}{\partial \dot x_2 \partial \dot x_1} & \frac{\partial ^2 F}{\partial \dot x_2 \partial \dot x_2} \end{matrix} \right| = \left| \begin{matrix} 2 & 0 \\ 0 & 2 \end{matrix} \right| = 4 > 0 H=x˙1x˙12Fx˙2x˙12Fx˙1x˙22Fx˙2x˙22F=2002=4>0所以 J J J有最小值。

你可能感兴趣的:(优化方法,抽象代数,算法)