目录
决策树
1 概述
1.1 决策树是如何工作的
1.2 sklearn中的决策树
2 DecisionTreeClassifier与红酒数据集
2.1 重要参数
2.1.2 random_state & splitter
2.1.3 剪枝参数
2.1.4 目标权重参数
2.2 重要属性和接口
3. DecisionTreeRegressor
3.1重要参数,属性及接口
3.2 实例:一维回归的图像绘制
4 实例:泰坦尼克号幸存者的预测
5.决策树的优缺点
决策树(Decision Tree)是一种非参数的有监督学习方法,它能够从一系列有特征和标签的数据中总结出决策规则,并用树状图的结构来呈现这些规则,以解决分类和回归问题。决策树算法容易理解,适用各种数据,在解决各 种问题时都有良好表现,尤其是以树模型为核心的各种集成算法,在各个行业和领域都有广泛的应用。
我们来简单了解一下决策树是如何工作的。决策树算法的本质是一种图结构,我们只需要问一系列问题就可以对数 据进行分类了。比如说,来看看下面这组数据集,这是一系列已知物种以及所属类别的数据:
我们现在的目标是,将动物们分为哺乳类和非哺乳类。那根据已经收集到的数据,决策树算法为我们算出了下面的 这棵决策树:
假如我们现在发现了一种新物种Python,它是冷血动物,体表带鳞片,并且不是胎生,我们就可以通过这棵决策 树来判断它的所属类别。
可以看出,在这个决策过程中,我们一直在对记录的特征进行提问。最初的问题所在的地方叫做根节点,在得到结 论前的每一个问题都是中间节点,而得到的每一个结论(动物的类别)都叫做叶子节点。
关键概念:节点
根节点:没有进边,有出边。包含最初的,针对特征的提问。
中间节点:既有进边也有出边,进边只有一条,出边可以有很多条。都是针对特征的提问。 叶子节点:有进边,没有出边,每个叶子节点都是一个类别标签。
*子节点和父节点:在两个相连的节点中,更接近根节点的是父节点,另一个是子节点。
决策树算法的核心是要解决两个问题:
几乎所有决策树有关的模型调整方法,都围绕这两个问题展开。这两个问题背后的原理十分复杂,我们会在讲解模 型参数和属性的时候为大家简单解释涉及到的部分。在这门课中,我会尽量避免让大家太过深入到决策树复杂的原 理和数学公式中(尽管决策树的原理相比其他高级的算法来说是非常简单了),这门课会专注于实践和应用。如果 大家希望理解更深入的细节,建议大家在听这门课之前还是先去阅读和学习一下决策树的原理。
模块sklearn.tree
sklearn中决策树的类都在”tree“这个模块之下。这个模块总共包含五个类:
tree.DecisionTreeClassifier |
分类树 |
tree.DecisionTreeRegressor |
回归树 |
tree.export_graphviz |
将生成的决策树导出为DOT格式,画图专用 |
tree.ExtraTreeClassifier |
高随机版本的分类树 |
tree.ExtraTreeRegressor |
高随机版本的回归树 |
我们会主要讲解分类树和回归树,并用图像呈现给大家。
sklearn的基本建模流程
在那之前,我们先来了解一下sklearn建模的基本流程。
在这个流程下,分类树对应的代码是:
from sklearn import tree #导入需要的模块
clf = tree.DecisionTreeClassifier() #实例化
clf = clf.fit(X_train,y_train) #用训练集数据训练模型
result = clf.score(X_test,y_test) #导入测试集,从接口中调用需要的信息
criterion
为了要将表格转化为一棵树,决策树需要找出最佳节点和最佳的分枝方法,对分类树来说,衡量这个“最佳”的指标 叫做“不纯度”。通常来说,不纯度越低,决策树对训练集的拟合越好。现在使用的决策树算法在分枝方法上的核心 大多是围绕在对某个不纯度相关指标的最优化上。
不纯度基于节点来计算,树中的每个节点都会有一个不纯度,并且子节点的不纯度一定是低于父节点的,也就是 说,在同一棵决策树上,叶子节点的不纯度一定是最低的。
Criterion这个参数正是用来决定不纯度的计算方法的。sklearn提供了两种选择: 1)输入”entropy“,使用信息熵(Entropy)
其中t代表给定的节点,i代表标签的任意分类,代表标签分类i在节点t上所占的比例。注意,当使用信息熵时,sklearn实际计算的是基于信息熵的信息增益(Information Gain),即父节点的信息熵和子节点的信息熵之差。
比起基尼系数,信息熵对不纯度更加敏感,对不纯度的惩罚最强。但是在实际使用中,信息熵和基尼系数的效果基 本相同。信息熵的计算比基尼系数缓慢一些,因为基尼系数的计算不涉及对数。另外,因为信息熵对不纯度更加敏 感,所以信息熵作为指标时,决策树的生长会更加“精细”,因此对于高维数据或者噪音很多的数据,信息熵很容易 过拟合,基尼系数在这种情况下效果往往比较好。当模型拟合程度不足的时候,即当模型在训练集和测试集上都表 现不太好的时候,使用信息熵。当然,这些不是绝对的。
参数 |
criterion |
如何影响模型? |
确定不纯度的计算方法,帮忙找出最佳节点和最佳分枝,不纯度越低,决策树对训练集 的拟合越好 |
可能的输入有哪些? |
不填默认基尼系数,填写gini使用基尼系数,填写entropy使用信息增益 |
怎样选取参数? |
通常就使用基尼系数 数据维度很大,噪音很大时使用基尼系数 维度低,数据比较清晰的时候,信息熵和基尼系数没区别当决策树的拟合程度不够的时候,使用信息熵 两个都试试,不好就换另外一个 |
到这里,决策树的基本流程其实可以简单概括如下:
直到没有更多的特征可用,或整体的不纯度指标已经最优,决策树就会停止生长。
建立一棵树
1.导入需要的算法库和模块
# 导入需要的算法库和模块
from sklearn import tree
from sklearn.datasets import load_wine
from sklearn.model_selection import train_test_split
import graphviz
2.探索数据
# 探索数据,也就是查看数据长什么样子
wine = load_wine()
print(wine.data.shape) #(178, 13)
print(wine.target)
输出
(178, 13)
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2]
# 查看表长什么样子
import pandas as pd
table=pd.concat([pd.DataFrame(wine.data),pd.DataFrame(wine.target)],axis=1)
print(table)
#查看表头的名字
print(wine.feature_names)
#查看表的分类
print(wine.target_names)
['alcohol', 'malic_acid', 'ash', 'alcalinity_of_ash', 'magnesium', 'total_phenols', 'flavanoids', 'nonflavanoid_phenols', 'proanthocyanins', 'color_intensity', 'hue', 'od280/od315_of_diluted_wines', 'proline']
['class_0' 'class_1' 'class_2']
3.分训练集和测试集
Xtrain, Xtest, Ytrain, Ytest = train_test_split(wine.data,wine.target,test_size=0.3)
print(Xtrain.shape) #(124, 13)
print(Xtest.shape) #(54, 13)
4.建立模型
clf = tree.DecisionTreeClassifier(criterion="entropy")
clf = clf.fit(Xtrain, Ytrain)
score = clf.score(Xtest, Ytest) #返回预测的准确度
print(score)
5.画出一棵树吧
feature_name = ['酒精','苹果酸','灰','灰的碱性','镁','总酚','类黄酮','非黄烷类酚类','花青素','颜色强度','色调','od280/od315稀释葡萄酒','脯氨酸']
import graphviz
dot_data = tree.export_graphviz(clf
,out_file = None
,feature_names = feature_name
,class_names=["琴酒","雪莉","贝尔摩德"]
,filled=True #颜色填充
,rounded=True #框框的圆角
)
graph = graphviz.Source(dot_data.replace("helvetica", "MicrosoftYaHei"))
graph.view()
6.探索决策树
#特征重要性
clf.feature_importances_
array([0.02089151, 0.01416599, 0. , 0.03389895, 0. ,
0. , 0.44769643, 0. , 0. , 0.17234392,
0. , 0. , 0.3110032 ])
[*zip(feature_name,clf.feature_importances_)]
[('酒精', 0.020891507777503787),
('苹果酸', 0.014165989652962183),
('灰', 0.0),
('灰的碱性', 0.033898949274323104),
('镁', 0.0),
('总酚', 0.0),
('类黄酮', 0.4476964329287443),
('非黄烷类酚类', 0.0),
('花青素', 0.0),
('颜色强度', 0.17234391840479193),
('色调', 0.0),
('od280/od315稀释葡萄酒', 0.0),
('脯氨酸', 0.31100320196167475)]
我们已经在只了解一个参数的情况下,建立了一棵完整的决策树。但是回到步骤4建立模型,score会在某个值附近 波动,引起步骤5中画出来的每一棵树都不一样。它为什么会不稳定呢?如果使用其他数据集,它还会不稳定吗?
我们之前提到过,无论决策树模型如何进化,在分枝上的本质都还是追求某个不纯度相关的指标的优化,而正如我 们提到的,不纯度是基于节点来计算的,也就是说,决策树在建树时,是靠优化节点来追求一棵优化的树,但最优 的节点能够保证最优的树吗?集成算法被用来解决这个问题:sklearn表示,既然一棵树不能保证最优,那就建更 多的不同的树,然后从中取最好的。怎样从一组数据集中建不同的树?在每次分枝时,不从使用全部特征,而是随 机选取一部分特征,从中选取不纯度相关指标最优的作为分枝用的节点。这样,每次生成的树也就不同了。
clf = tree.DecisionTreeClassifier(criterion="entropy"
,random_state=30
)
clf = clf.fit(Xtrain, Ytrain)
score = clf.score(Xtest, Ytest)
score
clf = tree.DecisionTreeClassifier(criterion="entropy"
,random_state=30
,splitter="random"
#splitter也是用来控制决策树中的随机选项,默认best
)
clf = clf.fit(Xtrain, Ytrain)
score = clf.score(Xtest, Ytest)
score
import graphviz
dot_data = tree.export_graphviz(clf
,out_file = None
,feature_names= feature_name
,class_names=["琴酒","雪莉","贝尔摩德"]
,filled=True
,rounded=True
)
graph = graphviz.Source(dot_data)
graph
在不加限制的情况下,一棵决策树会生长到衡量不纯度的指标最优,或者没有更多的特征可用为止。这样的决策树 往往会过拟合,这就是说,它会在训练集上表现很好,在测试集上却表现糟糕。我们收集的样本数据不可能和整体 的状况完全一致,因此当一棵决策树对训练数据有了过于优秀的解释性,它找出的规则必然包含了训练样本中的噪 声,并使它对未知数据的拟合程度不足。
为了让决策树有更好的泛化性,我们要对决策树进行剪枝。剪枝策略对决策树的影响巨大,正确的剪枝策略是优化 决策树算法的核心。sklearn为我们提供了不同的剪枝策略:
限制树的最大深度,超过设定深度的树枝全部剪掉
这是用得最广泛的剪枝参数,在高维度低样本量时非常有效。决策树多生长一层,对样本量的需求会增加一倍,所 以限制树深度能够有效地限制过拟合。在集成算法中也非常实用。实际使用时,建议从=3开始尝试,看看拟合的效 果再决定是否增加设定深度。
min_samples_leaf限定,一个节点在分枝后的每个子节点都必须包含至少min_samples_leaf个训练样本,否则分 枝就不会发生,或者,分枝会朝着满足每个子节点都包含min_samples_leaf个样本的方向去发生
一般搭配max_depth使用,在回归树中有神奇的效果,可以让模型变得更加平滑。这个参数的数量设置得太小会引 起过拟合,设置得太大就会阻止模型学习数据。一般来说,建议从=5开始使用。如果叶节点中含有的样本量变化很 大,建议输入浮点数作为样本量的百分比来使用。同时,这个参数可以保证每个叶子的最小尺寸,可以在回归问题 中避免低方差,过拟合的叶子节点出现。对于类别不多的分类问题,=1通常就是最佳选择。
min_samples_split限定,一个节点必须要包含至少min_samples_split个训练样本,这个节点才允许被分枝,否则 分枝就不会发生。
clf = tree.DecisionTreeClassifier(criterion="entropy"
,random_state=30
,splitter="random"
,max_depth=3
,min_samples_leaf=10
,min_samples_split=10
)
clf = clf.fit(Xtrain, Ytrain)
dot_data = tree.export_graphviz(clf
,out_file = None
,feature_names= feature_name
,class_names=["琴酒","雪莉","贝尔摩德"]
,filled=True
,rounded=True
)
graph = graphviz.Source(dot_data.replace("helvetica", "MicrosoftYaHei"))
graph.view()
一般max_depth使用,用作树的”精修“
max_features限制分枝时考虑的特征个数,超过限制个数的特征都会被舍弃。和max_depth异曲同工, max_features是用来限制高维度数据的过拟合的剪枝参数,但其方法比较暴力,是直接限制可以使用的特征数量 而强行使决策树停下的参数,在不知道决策树中的各个特征的重要性的情况下,强行设定这个参数可能会导致模型 学习不足。如果希望通过降维的方式防止过拟合,建议使用PCA,ICA或者特征选择模块中的降维算法。
min_impurity_decrease限制信息增益的大小,信息增益小于设定数值的分枝不会发生。这是在0.19版本中更新的 功能,在0.19版本之前时使用min_impurity_split。
那具体怎么来确定每个参数填写什么值呢?这时候,我们就要使用确定超参数的曲线来进行判断了,继续使用我们 已经训练好的决策树模型clf。超参数的学习曲线,是一条以超参数的取值为横坐标,模型的度量指标为纵坐标的曲 线,它是用来衡量不同超参数取值下模型的表现的线。在我们建好的决策树里,我们的模型度量指标就是score。
import matplotlib.pyplot as plt
%matplotlib inline
test = []
for i in range(10):
clf = tree.DecisionTreeClassifier(max_depth=i+1
,criterion="entropy"
,random_state=30
,splitter="random"
)
clf = clf.fit(Xtrain, Ytrain)
score = clf.score(Xtest, Ytest)
test.append(score)
plt.plot(range(1,11),test,color="red",label="max_depth")
plt.legend()
plt.show()
class_weight & min_weight_fraction_leaf
完成样本标签平衡的参数。样本不平衡是指在一组数据集中,标签的一类天生占有很大的比例。比如说,在银行要 判断“一个办了信用卡的人是否会违约”,就是是vs否(1%:99%)的比例。这种分类状况下,即便模型什么也不 做,全把结果预测成“否”,正确率也能有99%。因此我们要使用class_weight参数对样本标签进行一定的均衡,给 少量的标签更多的权重,让模型更偏向少数类,向捕获少数类的方向建模。该参数默认None,此模式表示自动给 与数据集中的所有标签相同的权重。
有了权重之后,样本量就不再是单纯地记录数目,而是受输入的权重影响了,因此这时候剪枝,就需要搭配min_ weight_fraction_leaf这个基于权重的剪枝参数来使用。另请注意,基于权重的剪枝参数(例如min_weight_ fraction_leaf)将比不知道样本权重的标准(比如min_samples_leaf)更少偏向主导类。如果样本是加权的,则使 用基于权重的预修剪标准来更容易优化树结构,这确保叶节点至少包含样本权重的总和的一小部分。
属性是在模型训练之后,能够调用查看的模型的各种性质。对决策树来说,最重要的是feature_importances_,能 够查看各个特征对模型的重要性。
sklearn中许多算法的接口都是相似的,比如说我们之前已经用到的fit和score,几乎对每个算法都可以使用。除了 这两个接口之外,决策树最常用的接口还有apply和predict。apply中输入测试集返回每个测试样本所在的叶子节点的索引,predict输入测试集返回每个测试样本的标签。返回的内容一目了然并且非常容易,大家感兴趣可以自己 下去试试看。
在这里不得不提的是,所有接口中要求输入X_train和X_test的部分,输入的特征矩阵必须至少是一个二维矩阵。sklearn不接受任何一维矩阵作为特征矩阵被输入。如果你的数据的确只有一个特征,那必须用reshape(-1,1)来给 矩阵增维;如果你的数据只有一个特征和一个样本,使用reshape(1,-1)来给你的数据增维。
#apply返回每个测试样本所在的叶子节点的索引
clf.apply(Xtest)
#predict返回每个测试样本的分类/回归结果
clf.predict(Xtest)
至此,我们已经学完了分类树DecisionTreeClassifier和用决策树绘图(export_graphviz)的所有基础。我们讲解 了决策树的基本流程,分类树的八个参数,一个属性,四个接口,以及绘图所用的代码。
八个参数:Criterion,两个随机性相关的参数(random_state,splitter),五个剪枝参数(max_depth, min_samples_split,min_samples_leaf,max_feature,min_impurity_decrease)
一个属性:feature_importances_
四个接口:fit,score,apply,predict
class (criterion=’mse’, splitter=’best’, max_depth=None,
min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0.0, max_features=None, random_state=None, max_leaf_nodes=None, min_impurity_decrease=0.0, min_impurity_split=None, presort=False)
几乎所有参数,属性及接口都和分类树一模一样。需要注意的是,在回归树种,没有标签分布是否均衡的问题,因此没有class_weight这样的参数。
criterion
回归树衡量分枝质量的指标,支持的标准有三种:
属性中最重要的依然是feature_importances_,接口依然是apply, fit, predict, score最核心。
其中N是样本数量,i是每一个数据样本,fi是模型回归出的数值,yi是样本点i实际的数值标签。所以MSE的本质, 其实是样本真实数据与回归结果的差异。在回归树中,MSE不只是我们的分枝质量衡量指标,也是我们最常用的衡 量回归树回归质量的指标,当我们在使用交叉验证,或者其他方式获取回归树的结果时,我们往往选择均方误差作 为我们的评估(在分类树中这个指标是score代表的预测准确率)。在回归中,我们追求的是,MSE越小越好。
然而,回归树的接口score返回的是R平方,并不是MSE。R平方被定义如下:
其中u是残差平方和(MSE * N),v是总平方和,N是样本数量,i是每一个数据样本,fi是模型回归出的数值,yi 是样本点i实际的数值标签。y帽是真实数值标签的平均数。R平方可以为正为负(如果模型的残差平方和远远大于 模型的总平方和,模型非常糟糕,R平方就会为负),而均方误差永远为正。
值得一提的是,虽然均方误差永远为正,但是sklearn当中使用均方误差作为评判标准时,却是计算”负均方误 差“(neg_mean_squared_error)。这是因为sklearn在计算模型评估指标的时候,会考虑指标本身的性质,均
方误差本身是一种误差,所以被sklearn划分为模型的一种损失(loss),因此在sklearn当中,都以负数表示。真正的 均方误差MSE的数值,其实就是neg_mean_squared_error去掉负号的数字。
简单看看回归树是怎样工作的
from sklearn.datasets import load_boston
from sklearn.model_selection import cross_val_score
from sklearn.tree import DecisionTreeRegressor
boston = load_boston()
regressor = DecisionTreeRegressor(random_state=0)
cross_val_score(regressor, boston.data, boston.target, cv=10,
scoring = "neg_mean_squared_error")
#交叉验证cross_val_score的用法
- regressor:模型
- boston.data:完整数据集
- boston.target:完整标签
- cv=10:交叉次数
- scoring = "neg_mean_squared_error" :得分,指定的是负均方误差
array([-16.41568627, -10.61843137, -18.30176471, -55.36803922,
-16.01470588, -43.57745098, -12.2148 , -95.2186 ,
-57.764 , -37.9534 ])
交叉验证是用来观察模型的稳定性的一种方法,我们将数据划分为n份,依次使用其中一份作为测试集,其他n-1份 作为训练集,多次计算模型的精确性来评估模型的平均准确程度。训练集和测试集的划分会干扰模型的结果,因此 用交叉验证n次的结果求出的平均值,是对模型效果的一个更好的度量。
接下来我们到二维平面上来观察决策树是怎样拟合一条曲线的。我们用回归树来拟合正弦曲线,并添加一些噪声来 观察回归树的表现。
1.导入需要的库
import numpy as np
from sklearn.tree import DecisionTreeRegressor
import matplotlib.pyplot as plt
2.创建一条含有噪声的正弦曲线
在这一步,我们的基本思路是,先创建一组随机的,分布在0~5上的横坐标轴的取值(x),然后将这一组值放到sin函 数中去生成纵坐标的值(y),接着再到y上去添加噪声。全程我们会使用numpy库来为我们生成这个正弦曲线。
rng = np.random.RandomState(1)
X = np.sort(5 * rng.rand(80,1), axis=0)
y = np.sin(X).ravel()
y[::5] += 3 * (0.5 - rng.rand(16))
#np.random.rand(数组结构),生成随机数组的函数
#了解降维函数ravel()的用法
np.random.random((2,1))
np.random.random((2,1)).ravel()
np.random.random((2,1)).ravel().shape
3.实例化&训练模型
regr_1 = DecisionTreeRegressor(max_depth=2)
regr_2 = DecisionTreeRegressor(max_depth=5)
regr_1.fit(X, y)
regr_2.fit(X, y)
4.测试集导入模型,预测结果
X_test = np.arange(0.0, 5.0, 0.01)[:, np.newaxis]
y_1 = regr_1.predict(X_test)
y_2 = regr_2.predict(X_test)
plt.figure()
plt.scatter(X, y, s=20, edgecolor="black",c="darkorange", label="data")
plt.plot(X_test, y_1, color="cornflowerblue",label="max_depth=2", linewidth=2)
plt.plot(X_test, y_2, color="yellowgreen", label="max_depth=5", linewidth=2)
plt.xlabel("data")
plt.ylabel("target")
plt.title("Decision Tree Regression")
plt.legend()
plt.show()
可见,回归树学习了近似正弦曲线的局部线性回归。我们可以看到,如果树的最大深度(由max_depth参数控制) 设置得太高,则决策树学习得太精细,它从训练数据中学了很多细节,包括噪声得呈现,从而使模型偏离真实的正 弦曲线,形成过拟合。
泰坦尼克号的沉没是世界上最严重的海难事故之一,今天我们通过分类树模型来预测一下哪些人可能成为幸存者。 数据集来源Titanic - Machine Learning from Disaster | Kaggle
1.导入所需要的的库
#1.导入所需要的的库
import pandas as pd
from sklearn.tree import DecisionTreeClassifier
from sklearn.model_selection import train_test_split
from sklearn.model_selection import GridSearchCV
from sklearn.model_selection import cross_val_score
import matplotlib.pyplot as plt
2.导入数据集,探索数据
#2.导入数据集,探索数据
data=pd.read_csv(r"E:\数据分析师学习\jupyter notebook\泰坦尼克号数据.csv",engine='python',index_col=0)
data.head()
data.info()
3.对数据集进行预处理
3.1删除缺失值过多的列,和观察判断来说和预测的y没有关系的列
#删除缺失值过多的列,和观察判断来说和预测的y没有关系的列
data.drop(["Cabin","Name","Ticket"],inplace=True,axis=1)
data.head()
3.2处理缺失值,对缺失值较多的列进行填补,有一些特征只确实一两个值,可以采取直接删除记录的方法
#处理缺失值,对缺失值较多的列进行填补,有一些特征只确实一两个值,可以采取直接删除记录的方法
data["Age"]=data["Age"].fillna(data["Age"].mean())
data.info()
#对少量空值的行直接删掉
data=data.dropna()
data.info()
3.2将分类变量转换成数值型变量
3.2.1将二分类变量转换成数字型变量
astype能够将一个pandas对象转换为某种类型,和apply(int(x))不同,astype可以将文本类转换为数字,用这 个方式可以很便捷地将二分类特征转换为0~1
data["Sex"]=(data["Sex"]=="male").astype("int")
data.head()
3.2.2将三分类变量转换成数值型变量
labels=data["Embarked"].unique().tolist()
data["Embarked"]=data["Embarked"].apply(lambda x:labels.index(x))
data.head(10)
4.提取标签和特征矩阵,分测试集和训练集
x=data.iloc[:,data.columns!="Survived"]
y=data.iloc[:,data.columns=="Survived"]
from sklearn.model_selection import train_test_split
Xtrain,Xtest,Ytrain,Ytest=train_test_split(x,y,test_size=0.3)
#修正测试集和训练集的索引
for i in [Xtrain,Xtest,Ytrain,Ytest]:
i.index=range(i.shape[0])
#查看分好的训练集和测试集
xtrain.info()
5.导入模型,策略跑一下查看结果
clf = DecisionTreeClassifier(random_state=1)
clf = clf.fit(Xtrain, Ytrain)
score1 = clf.score(Xtest, Ytest)
score1
结果:0.7640449438202247
用交叉验证:
score = cross_val_score(clf,x,y,cv=10).mean()
score
结果:0.7739402451481103
6.在不同max_depth下观察模型的拟合状况
tr=[]
te=[]
for i in range(10):
clf=DecisionTreeClassifier(random_state=25
,max_depth=i+1
,criterion="entropy"
)
clf=clf.fit(Xtrain, Ytrain)
score_tr = clf.score(Xtest, Ytest)
score_te = cross_val_score(clf,x,y,cv=10).mean()
tr.append(score_tr)
te.append(score_te)
print(max(te))
plt.plot(range(1,11),tr,color="red",label="train")
plt.plot(range(1,11),te,color="blue",label="test")
plt.xticks(range(1,11)) #指定横坐标
plt.legend()
plt.show()
7.用网格搜索调整参数
import numpy as np
gini_thresholds = np.linspace(0,0.5,20)
parameters = {'splitter':('best','random')
,'criterion':("gini","entropy")
,"max_depth":[*range(1,10)]
,'min_samples_leaf':[*range(1,50,5)]
,'min_impurity_decrease':[*np.linspace(0,0.5,20)]
}
clf = DecisionTreeClassifier(random_state=25)
GS = GridSearchCV(clf, parameters, cv=10)
GS.fit(Xtrain,Ytrain)
GS.best_params_
GS.best_score
决策树优点
决策树的缺点