numpy 高级索引技巧

文章目录

    • numpy高级索引和索引技巧
      • 用索引数组索引
      • 用布尔数组索引
      • 所述ix_()函数
      • 用字符串索引
    • 线性代数
      • 简单数组操作
    • 技巧和窍门
      • “自动”整形
      • 向量堆叠
      • 直方图

numpy高级索引和索引技巧

NumPy提供了比常规Python序列更多的索引功能。如前所述,除了通过整数和切片建立索引外,还可以通过整数数组和布尔数组来建立数组索引。

用索引数组索引

>>> a = np.arange(12)**2                       # the first 12 square numbers
>>> i = np.array([1, 1, 3, 8, 5])              # an array of indices
>>> a[i]                                       # the elements of a at the positions i
array([ 1,  1,  9, 64, 25])
>>>
>>> j = np.array([[3, 4], [9, 7]])      # a bidimensional array of indices
>>> a[j]                                       # the same shape as j
array([[ 9, 16],
       [81, 49]])

当索引数组a为多维时,单个索引数组引用的第一维a。下面的示例通过使用调色板将标签图像转换为彩色图像来显示此行为。

>>> palette = np.array([[0, 0, 0],         # black
...                     [255, 0, 0],       # red
...                     [0, 255, 0],       # green
...                     [0, 0, 255],       # blue
...                     [255, 255, 255]])  # white
>>> image = np.array([[0, 1, 2, 0],        # each value corresponds to a color in the palette
...                   [0, 3, 4, 0]])
>>> palette[image]                         # the (2, 4, 3) color image
array([[[  0,   0,   0],
        [255,   0,   0],
        [  0, 255,   0],
        [  0,   0,   0]],
       [[  0,   0,   0],
        [  0,   0, 255],
        [255, 255, 255],
        [  0,   0,   0]]])

我们还可以为多个维度提供索引。每个维度的索引数组必须具有相同的形状。

>>> a = np.arange(12).reshape(3,4)
>>> a
array([[ 0,  1,  2,  3],
       [ 4,  5,  6,  7],
       [ 8,  9, 10, 11]])
>>> i = np.array([[0, 1],                     # indices for the first dim of a
...               [1, 2]])
>>> j = np.array([[2, 1],                     # indices for the second dim
...               [3, 3]])
>>>
>>> a[i, j]                                   # i and j must have equal shape
array([[ 2,  5],
       [ 7, 11]])
>>>
>>> a[i, 2]
array([[ 2,  6],
       [ 6, 10]])
>>>
>>> a[:, j]                                     # i.e., a[ : , j]
array([[[ 2,  1],
        [ 3,  3]],
       [[ 6,  5],
        [ 7,  7]],
       [[10,  9],
        [11, 11]]])

自然,我们可以将ij放在一个序列中(例如一个列表),然后对该列表进行索引。

>>> l = (i, j)
# equivalent to a[i, j]
>>> a[l]
array([[ 2,  5],
       [ 7, 11]])

但是,我们不能通过将ij放入数组来完成此操作,因为该数组将被解释为索引a的第一个维度。

>>> s = np.array([i, j])

# not what we want
>>> a[s]
Traceback (most recent call last):
  File "", line 1, in ?
IndexError: index (3) out of range (0<=index<=2) in dimension 0

# same as a[i, j]
>>> a[tuple(s)]
array([[ 2,  5],
       [ 7, 11]])

使用数组建立索引的另一种常见用法是搜索时间相关序列的最大值:

>>> time = np.linspace(20, 145, 5)                 # time scale
>>> data = np.sin(np.arange(20)).reshape(5,4)      # 4 time-dependent series
>>> time
array([  20.  ,   51.25,   82.5 ,  113.75,  145.  ])
>>> data
array([[ 0.        ,  0.84147098,  0.90929743,  0.14112001],
       [-0.7568025 , -0.95892427, -0.2794155 ,  0.6569866 ],
       [ 0.98935825,  0.41211849, -0.54402111, -0.99999021],
       [-0.53657292,  0.42016704,  0.99060736,  0.65028784],
       [-0.28790332, -0.96139749, -0.75098725,  0.14987721]])

# index of the maxima for each series
>>> ind = data.argmax(axis=0)
>>> ind
array([2, 0, 3, 1])

# times corresponding to the maxima
>>> time_max = time[ind]
>>>
>>> data_max = data[ind, range(data.shape[1])] # => data[ind[0],0], data[ind[1],1]...

>>> time_max
array([  82.5 ,   20.  ,  113.75,   51.25])
>>> data_max
array([ 0.98935825,  0.84147098,  0.99060736,  0.6569866 ])

>>> np.all(data_max == data.max(axis=0))
True

您还可以将索引与数组一起用作分配给以下对象的目标:

>>> a = np.arange(5)
>>> a
array([0, 1, 2, 3, 4])
>>> a[[1,3,4]] = 0
>>> a
array([0, 0, 2, 0, 0])

但是,当索引列表包含重复项时,分配将完成几次,而留下最后一个值:

>>> a = np.arange(5)
>>> a[[0,0,2]]=[1,2,3]
>>> a
array([2, 1, 3, 3, 4])

这足够合理,但是请注意是否要使用Python的 +=构造,因为它可能无法满足您的期望:

>>> a = np.arange(5)
>>> a[[0,0,2]]+=1
>>> a
array([1, 1, 3, 3, 4])

即使0在索引列表中出现两次,第0个元素也仅递增一次。这是因为Python要求“ a + = 1”等于“ a = a + 1”。

用布尔数组索引

当我们使用(整数)索引数组对数组进行索引时,我们将提供要选择的索引列表。对于布尔索引,方法是不同的。我们显式选择数组中需要哪些项,不需要哪些项。

对于布尔索引,可以想到的最自然的方法是使用形状与原始数组相同的布尔数组:

>>> a = np.arange(12).reshape(3,4)
>>> b = a > 4
>>> b                                          # b is a boolean with a's shape
array([[False, False, False, False],
       [False,  True,  True,  True],
       [ True,  True,  True,  True]])
>>> a[b]                                       # 1d array with the selected elements
array([ 5,  6,  7,  8,  9, 10, 11])

此属性在分配中非常有用:

>>> a[b] = 0                                   # All elements of 'a' higher than 4 become 0
>>> a
array([[0, 1, 2, 3],
       [4, 0, 0, 0],
       [0, 0, 0, 0]])

您可以看下面的示例,看看如何使用布尔索引来生成Mandelbrot集的图像:

>>> import numpy as np
>>> import matplotlib.pyplot as plt
>>> def mandelbrot( h,w, maxit=20 ):
...     """Returns an image of the Mandelbrot fractal of size (h,w)."""
...     y,x = np.ogrid[ -1.4:1.4:h*1j, -2:0.8:w*1j ]
...     c = x+y*1j
...     z = c
...     divtime = maxit + np.zeros(z.shape, dtype=int)
...
...     for i in range(maxit):
...         z = z**2 + c
...         diverge = z*np.conj(z) > 2**2            # who is diverging
...         div_now = diverge & (divtime==maxit)  # who is diverging now
...         divtime[div_now] = i                  # note when
...         z[diverge] = 2                        # avoid diverging too much
...
...     return divtime
>>> plt.imshow(mandelbrot(400,400))

numpy 高级索引技巧_第1张图片

使用布尔值建立索引的第二种方式与整数索引更相似;对于数组的每个维,我们提供一个一维布尔数组来选择我们想要的切片:

>>> a = np.arange(12).reshape(3,4)
>>> b1 = np.array([False,True,True])             # first dim selection
>>> b2 = np.array([True,False,True,False])       # second dim selection
>>>
>>> a[b1,:]                                   # selecting rows
array([[ 4,  5,  6,  7],
       [ 8,  9, 10, 11]])
>>>
>>> a[b1]                                     # same thing
array([[ 4,  5,  6,  7],
       [ 8,  9, 10, 11]])
>>>
>>> a[:,b2]                                   # selecting columns
array([[ 0,  2],
       [ 4,  6],
       [ 8, 10]])
>>>
>>> a[b1,b2]                                  # a weird thing to do
array([ 4, 10])

请注意,一维布尔数组的长度必须与要切片的尺寸(或轴)的长度一致。在前面的例子中,b1具有长度为3(的数目的行a),和 b2(长度4)适合于索引的第二轴线(列) a

所述ix_()函数

ix_函数可用于组合不同的向量,以便获得每个n片段的结果。例如,如果您要计算从向量a,b和c中的每一个获取的所有三元组的所有a + b * c:

>>> a = np.array([2,3,4,5])
>>> b = np.array([8,5,4])
>>> c = np.array([5,4,6,8,3])
>>> ax,bx,cx = np.ix_(a,b,c)
>>> ax
array([[[2]],
       [[3]],
       [[4]],
       [[5]]])
>>> bx
array([[[8],
        [5],
        [4]]])
>>> cx
array([[[5, 4, 6, 8, 3]]])
>>> ax.shape, bx.shape, cx.shape
((4, 1, 1), (1, 3, 1), (1, 1, 5))
>>> result = ax+bx*cx
>>> result
array([[[42, 34, 50, 66, 26],
        [27, 22, 32, 42, 17],
        [22, 18, 26, 34, 14]],
       [[43, 35, 51, 67, 27],
        [28, 23, 33, 43, 18],
        [23, 19, 27, 35, 15]],
       [[44, 36, 52, 68, 28],
        [29, 24, 34, 44, 19],
        [24, 20, 28, 36, 16]],
       [[45, 37, 53, 69, 29],
        [30, 25, 35, 45, 20],
        [25, 21, 29, 37, 17]]])
>>> result[3,2,4]
17
>>> a[3]+b[2]*c[4]
17

您还可以按以下方式实现reduce:

>>> def ufunc_reduce(ufct, *vectors):
...    vs = np.ix_(*vectors)
...    r = ufct.identity
...    for v in vs:
...        r = ufct(r,v)
...    return r

然后将其用作:

>>> ufunc_reduce(np.add,a,b,c)
array([[[15, 14, 16, 18, 13],
        [12, 11, 13, 15, 10],
        [11, 10, 12, 14,  9]],
       [[16, 15, 17, 19, 14],
        [13, 12, 14, 16, 11],
        [12, 11, 13, 15, 10]],
       [[17, 16, 18, 20, 15],
        [14, 13, 15, 17, 12],
        [13, 12, 14, 16, 11]],
       [[18, 17, 19, 21, 16],
        [15, 14, 16, 18, 13],
        [14, 13, 15, 17, 12]]])

与普通的ufunc.reduce相比,该版本的reduce的优点在于,它利用广播规则 来避免创建一个参数数组,该参数数组的大小乘以输出的数量乘以向量的数量。

用字符串索引

请参见结构化数组。

线性代数

工作正在进行中。基本线性代数将包含在此处。

简单数组操作

有关更多信息,请参见numpy文件夹中的linalg.py。

>>> import numpy as np
>>> a = np.array([[1.0, 2.0], [3.0, 4.0]])
>>> print(a)
[[1. 2.]
 [3. 4.]]

>>> a.transpose()
array([[ 1.,  3.],
       [ 2.,  4.]])

>>> np.linalg.inv(a)
array([[-2. ,  1. ],
       [ 1.5, -0.5]])

>>> u = np.eye(2) # unit 2x2 matrix; "eye" represents "I"
>>> u
array([[ 1.,  0.],
       [ 0.,  1.]])
>>> j = np.array([[0.0, -1.0], [1.0, 0.0]])

>>> j @ j        # matrix product
array([[-1.,  0.],
       [ 0., -1.]])

>>> np.trace(u)  # trace
2.0

>>> y = np.array([[5.], [7.]])
>>> np.linalg.solve(a, y)
array([[-3.],
       [ 4.]])

>>> np.linalg.eig(j)
(array([ 0.+1.j,  0.-1.j]), array([[ 0.70710678+0.j        ,  0.70710678-0.j        ],
       [ 0.00000000-0.70710678j,  0.00000000+0.70710678j]]))
Parameters:
    square matrix
Returns
    The eigenvalues, each repeated according to its multiplicity.
    The normalized (unit "length") eigenvectors, such that the
    column ``v[:,i]`` is the eigenvector corresponding to the
    eigenvalue ``w[i]`` .

技巧和窍门

在这里,我们列出了一些简短而有用的提示。

“自动”整形

要更改数组的尺寸,您可以忽略其中一个尺寸,然后将自动推断尺寸:

>>> a = np.arange(30)
>>> b = a.reshape((2, -1, 3))  # -1 means "whatever is needed"
>>> b.shape
(2, 5, 3)
>>> b
array([[[ 0,  1,  2],
        [ 3,  4,  5],
        [ 6,  7,  8],
        [ 9, 10, 11],
        [12, 13, 14]],
       [[15, 16, 17],
        [18, 19, 20],
        [21, 22, 23],
        [24, 25, 26],
        [27, 28, 29]]])

向量堆叠

我们如何从大小相等的行向量列表中构建2D数组?在MATLAB中,这非常容易:如果xy是两个相同长度的向量,则只需要do m=[x;y]。在此NumPy的通过功能的工作原理column_stackdstackhstackvstack,视维在堆叠是必须要做的。例如:

>>> x = np.arange(0,10,2)
>>> y = np.arange(5)
>>> m = np.vstack([x,y])
>>> m
array([[0, 2, 4, 6, 8],
       [0, 1, 2, 3, 4]])
>>> xy = np.hstack([x,y])
>>> xy
array([0, 2, 4, 6, 8, 0, 1, 2, 3, 4])

这些功能在两个以上的方面背后的逻辑可能很奇怪。

也可以看看

Matlab用户的NumPy

直方图

histogram应用于数组的NumPy 函数返回一对向量:数组的直方图和bin边的向量。当心: matplotlib还具有建立直方图的功能(hist在Matlab中称为),该功能不同于NumPy中的直方图。主要区别是pylab.hist自动绘制直方图,而 numpy.histogram仅生成数据。

>>> import numpy as np
>>> rg = np.random.default_rng(1)
>>> import matplotlib.pyplot as plt
>>> # Build a vector of 10000 normal deviates with variance 0.5^2 and mean 2
>>> mu, sigma = 2, 0.5
>>> v = rg.normal(mu,sigma,10000)
>>> # Plot a normalized histogram with 50 bins
>>> plt.hist(v, bins=50, density=1)       # matplotlib version (plot)
>>> # Compute the histogram with numpy and then plot it
>>> (n, bins) = np.histogram(v, bins=50, density=True)  # NumPy version (no plot)
>>> plt.plot(.5*(bins[1:]+bins[:-1]), n)

numpy 高级索引技巧_第2张图片

你可能感兴趣的:(深度学习)