Chebyshev迭代和共轭梯度方法的收敛速度(后者或称误差分析)都与Chebyshev多项式有着紧密联系,因此做一些整理,以期把其中的逻辑理清,推导理顺。只覆盖关键要点,不求面面俱到。
与权函数 ρ ( y ) = 1 1 − y 2 \rho(y)=\frac{1}{\sqrt{1-y^2}} ρ(y)=1−y21对应的正交多项式为Chebyshev多项式。标准的Chebyshev多项式分两段定义:
T n ( y ) = { c o s ( n arccos ( y ) ) , y ∈ [ − 1 , 1 ] 1 2 [ ( y + y 2 − 1 ) n + ( y − y 2 − 1 ) n ] , y ∈ R ∖ [ − 1 , 1 ] T_n(y)=\left\{ \begin{aligned} &\mathrm{cos}(n\space\arccos(y)) &\space, y\in [-1,1]\\ &\frac{1}{2}\left[\left(y+\sqrt{y^2-1}\right)^n+\left(y-\sqrt{y^2-1}\right)^n\right] &\space, y \in \mathbf{R} \setminus [-1,1] \end{aligned} \right. Tn(y)=⎩⎨⎧cos(n arccos(y))21[(y+y2−1)n+(y−y2−1)n] ,y∈[−1,1] ,y∈R∖[−1,1]
概述一些基本性质。 n n n次的Chebyshev多项式在开区间 ( − 1 , 1 ) (-1,1) (−1,1)内有 n n n个零点,在 [ − 1 , 1 ] [-1,1] [−1,1]内有 n + 1 n+1 n+1个符号交错的极值点( − 1 -1 −1和 + 1 +1 +1交替)。Chebyshev多项式不是奇函数就是偶函数,且随 n n n交替变化。
对于任意位置区间 [ a , b ] [a,b] [a,b]的Chebyshev多项式,都可以通过平移和缩放来化为标准区间 [ − 1 , 1 ] [-1,1] [−1,1]上的标准Chebyshev多项式。对于 x ∈ [ a , b ] x\in[a,b] x∈[a,b],做变换 y = x − 1 2 ( b + a ) 1 2 ( b − a ) y=\frac{x-\frac{1}{2}(b+a)}{\frac{1}{2}(b-a)} y=21(b−a)x−21(b+a),即有 y ∈ [ − 1 , 1 ] y\in[-1,1] y∈[−1,1]:
T n ~ ( x ) = T n ( y = x − 1 2 ( b + a ) 1 2 ( b − a ) ) \widetilde{T_n}(x)=T_n\left(y=\frac{x-\frac{1}{2}(b+a)}{\frac{1}{2}(b-a)}\right) Tn (x)=Tn(y=21(b−a)x−21(b+a))
相应地,权函数也做变换:
ρ ~ ( x ) = ρ ( y = x − 1 2 ( b + a ) 1 2 ( b − a ) ) = 1 1 − ( x − 1 2 ( b + a ) 1 2 ( b − a ) ) 2 \widetilde{\rho}(x)=\rho\left(y=\frac{x-\frac{1}{2}(b+a)}{\frac{1}{2}(b-a)}\right)= \frac{1}{\sqrt{1-\left( \frac{x-\frac{1}{2}(b+a)}{\frac{1}{2}(b-a)} \right)^2}} ρ (x)=ρ(y=21(b−a)x−21(b+a))=1−(21(b−a)x−21(b+a))21
记 θ = a r c c o s y \theta=\mathrm{arccos}y θ=arccosy,利用和差化积公式有
cos ( ( n + 1 ) θ ) + cos ( ( n − 1 ) θ ) = 2 cos ( n θ ) cos ( θ ) \cos((n+1)\theta)+\cos((n-1)\theta)=2\cos(n\theta)\cos(\theta) cos((n+1)θ)+cos((n−1)θ)=2cos(nθ)cos(θ)
故有
T n + 1 ( y ) = 2 y T n ( y ) − T n − 1 ( y ) T_{n+1}(y)=2yT_n(y)-T_{n-1}(y) Tn+1(y)=2yTn(y)−Tn−1(y)
对之前提到的定义在 x ∈ [ a , b ] x\in[a,b] x∈[a,b]上的Chebyshev多项式,按照区间外一点 c ∉ [ a , b ] c\notin[a,b] c∈/[a,b]来做归一化:
T n ^ ( x ) = T n ~ ( x ) T n ~ ( c ) \widehat{T_n}(x)=\frac{\widetilde{T_n}(x)}{\widetilde{T_n}(c)} Tn (x)=Tn (c)Tn (x)
显然有 T n ^ ( x ) ∈ Φ n , c = { f ∈ P ∣ f ( c ) = 1 } \widehat{T_n}(x)\in\Phi_{n,c}=\{f\in\mathbf{P}\space|\space f(c)=1 \} Tn (x)∈Φn,c={f∈P ∣ f(c)=1}。后者表示所有在 c c c这一点值为1的 n n n次多项式的集合。Chebyshev多项式具有如下的逼近性质。
∣ ∣ T n ^ ( x ) ∣ ∣ C [ a , b ] = inf f ∈ Φ n , c ∣ ∣ f ∣ ∣ C [ a , b ] ||\widehat{T_n}(x)||_{C[a,b]}={\underset {f\in\Phi_{n,c}}{\operatorname {inf} }} ||f||_{C[a,b]} ∣∣Tn (x)∣∣C[a,b]=f∈Φn,cinf∣∣f∣∣C[a,b]
即所有在 c c c这一点值为1的多项式里,Chebyshev多项式是取到最小范数的那一个。由有限维空间内范数的等价性,从无穷范数入手证明。
首先说明 T n ^ ( x ) \widehat{T_n}(x) Tn (x)是well-defined的。因为 T n ( y ) T_n(y) Tn(y)的零点都在开区间 ( − 1 , 1 ) (-1,1) (−1,1)内,因此平移和缩放后 T n ~ ( x ) \widetilde{T_n}(x) Tn (x)的零点都在 [ a , b ] [a,b] [a,b]内, T n ~ ( c ) ≠ 0 \widetilde{T_n}(c)\neq0 Tn (c)=0。
反证法。假设 Y n ∈ Φ n , c Y_n\in\Phi_{n,c} Yn∈Φn,c,且满足 ∣ ∣ Y n ∣ ∣ C [ a , b ] < ∣ ∣ T n ^ ∣ ∣ C [ a , b ] ||Y_n||_{C[a,b]}<||\widehat{T_n}||_{C[a,b]} ∣∣Yn∣∣C[a,b]<∣∣Tn ∣∣C[a,b]。则对于 z n ( x ) = T n ^ ( x ) − Y n ( x ) z_n(x)=\widehat{T_n}(x)-Y_n(x) zn(x)=Tn (x)−Yn(x),它有一个零点是 c c c。
对于标准Chebyshev多项式 T n y T_n{y} Tny,在 [ − 1 , 1 ] [-1,1] [−1,1]上的(交错)极值点为 cos ( k π n ) , k = 0 , 1 , . . . , n \cos(\frac{k\pi}{n}), k=0,1,...,n cos(nkπ),k=0,1,...,n。所以 T n ~ ( x ) \widetilde{T_n}(x) Tn (x)在 [ a , b ] [a,b] [a,b]上的(交错)极值点为 x k = b + a 2 + b − a 2 cos ( k π n ) , k = 0 , 1 , . . . , n x_k=\frac{b+a}{2}+\frac{b-a}{2}\cos(\frac{k\pi}{n}), k=0,1,...,n xk=2b+a+2b−acos(nkπ),k=0,1,...,n。因为 ∣ ∣ Y n ( x ) ∣ ∣ C [ a , b ] < ∣ ∣ T n ^ ( x ) ∣ ∣ C [ a , b ] ||Y_n(x)||_{C[a,b]}<||\widehat{T_n}(x)||_{C[a,b]} ∣∣Yn(x)∣∣C[a,b]<∣∣Tn (x)∣∣C[a,b],那么自然有
∣ Y n ( x k ) ∣ ≤ ∣ ∣ Y n ( x ) ∣ ∣ C [ a , b ] < ∣ ∣ T n ^ ( x ) ∣ ∣ C [ a , b ] = ∣ T n ^ ( x k ) ∣ , k = 0 , 1 , . . . , n |Y_n(x_k)|\leq||Y_n(x)||_{C[a,b]}<||\widehat{T_n}(x)||_{C[a,b]}=|\widehat{T_n}(x_k)|\space, k=0,1,...,n ∣Yn(xk)∣≤∣∣Yn(x)∣∣C[a,b]<∣∣Tn (x)∣∣C[a,b]=∣Tn (xk)∣ ,k=0,1,...,n
所以 T n ^ ( x k ) \widehat{T_n}(x_k) Tn (xk)与 T n ^ ( x k ) − Y n ( x k ) \widehat{T_n}(x_k)-Y_n(x_k) Tn (xk)−Yn(xk)同号!而 { x k } \{x_k\} {xk}是 T n ^ ( x ) \widehat{T_n}(x) Tn (x)的一组符号交错点,那么也是 T n ^ ( x ) − Y n ( x ) \widehat{T_n}(x)-Y_n(x) Tn (x)−Yn(x)的一组符号交错点。所以在开区间 ( x k , x k + 1 ) (x_k,x_{k+1}) (xk,xk+1)中必至少有 z n ( x ) z_n(x) zn(x)的一个零点,则 ( a , b ) (a,b) (a,b)内至少有 z n ( x ) z_n(x) zn(x)的 n n n个不同零点。
加上前述的 c ∉ [ a , b ] c\notin[a,b] c∈/[a,b]也是 z n ( x ) z_n(x) zn(x)的一个零点,故它至少有 n + 1 n+1 n+1个零点,这与它是 n n n次多项式矛盾。证毕。
再来估计 ∣ ∣ T n ^ ( x ) ∣ ∣ C [ a , b ] = inf f ∈ Φ n , c ∣ ∣ f ∣ ∣ C [ a , b ] ||\widehat{T_n}(x)||_{C[a,b]}={\underset {f\in\Phi_{n,c}}{\operatorname {inf} }} ||f||_{C[a,b]} ∣∣Tn (x)∣∣C[a,b]=f∈Φn,cinf∣∣f∣∣C[a,b]的大小。
∣ ∣ T n ^ ( x ) ∣ ∣ C [ a , b ] = ∣ ∣ T n ~ ( x ) T n ~ ( c ) ∣ ∣ C [ a , b ] = ∣ ∣ T n ~ ( x ) ∣ ∣ C [ a , b ] ∣ T n ~ ( c ) ∣ = 1 ∣ T n ~ ( c ) ∣ ||\widehat{T_n}(x)||_{C[a,b]}=\left|\left|\frac{\widetilde{T_n}(x)}{\widetilde{T_n}(c)}\right|\right|_{C[a,b]}= \frac{||\widetilde{T_n}(x)||_{C[a,b]}}{|\widetilde{T_n}(c)|}= \frac{1}{|\widetilde{T_n}(c)|} ∣∣Tn (x)∣∣C[a,b]=∣∣∣∣∣∣∣∣∣∣Tn (c)Tn (x)∣∣∣∣∣∣∣∣∣∣C[a,b]=∣Tn (c)∣∣∣Tn (x)∣∣C[a,b]=∣Tn (c)∣1
而
T n ~ ( c ) = T n ( c − b + a 2 b − a 2 ) = T n ( − ( b − c ) + ( a − c ) 2 ( b − c ) − ( a − c ) 2 ) = ( − 1 ) n T n ( ( b − c ) + ( a − c ) ( b − c ) − ( a − c ) ) \widetilde{T_n}(c)= T_n\left(\frac{c-\frac{b+a}{2}}{\frac{b-a}{2}} \right)= T_n\left(\frac{-\frac{(b-c)+(a-c)}{2}}{\frac{(b-c)-(a-c)}{2}} \right)= (-1)^nT_n\left( \frac{(b-c)+(a-c)}{(b-c)-(a-c)} \right) Tn (c)=Tn(2b−ac−2b+a)=Tn(2(b−c)−(a−c)−2(b−c)+(a−c))=(−1)nTn((b−c)−(a−c)(b−c)+(a−c))
所以
∣ T n ~ ( c ) ∣ = T n ( ∣ ( b − c ) + ( a − c ) ( b − c ) − ( a − c ) ∣ ) = T n ( λ + 1 λ − 1 ) |\widetilde{T_n}(c)|= T_n\left(\left| \frac{(b-c)+(a-c)}{(b-c)-(a-c)} \right|\right)= T_n\left(\frac{\lambda+1}{\lambda-1} \right) ∣Tn (c)∣=Tn(∣∣∣∣(b−c)−(a−c)(b−c)+(a−c)∣∣∣∣)=Tn(λ−1λ+1)
其中 λ = max ( ∣ a − c ∣ ∣ b − c ∣ , ∣ b − c ∣ ∣ a − c ∣ ) > 1 \lambda=\max(\frac{|a-c|}{|b-c|},\frac{|b-c|}{|a-c|})>1 λ=max(∣b−c∣∣a−c∣,∣a−c∣∣b−c∣)>1。所以根据标准Chebyshev多项式在 [ − 1 , 1 ] [-1,1] [−1,1]区间外的表达式,有
T n ( λ + 1 λ − 1 ) ≥ 1 2 [ λ + 1 λ − 1 + ( λ + 1 λ − 1 ) 2 − 1 ] n = 1 2 ( λ + 1 λ − 1 ) n T_n\left(\frac{\lambda+1}{\lambda-1} \right)\geq \frac{1}{2}\left[ \frac{\lambda+1}{\lambda-1}+\sqrt{ \left(\frac{\lambda+1}{\lambda-1}\right)^2-1 } \right]^n= \frac{1}{2}\left(\frac{\sqrt{\lambda}+1}{\sqrt{\lambda}-1}\right)^n Tn(λ−1λ+1)≥21⎣⎡λ−1λ+1+(λ−1λ+1)2−1⎦⎤n=21(λ−1λ+1)n
所以最后得到的估计是
∣ ∣ T n ^ ( x ) ∣ ∣ C [ a , b ] = 1 ∣ T n ~ ( c ) ∣ = 1 T n ( λ + 1 λ − 1 ) ≤ 2 ( λ − 1 λ + 1 ) n ||\widehat{T_n}(x)||_{C[a,b]}= \frac{1}{|\widetilde{T_n}(c)|}= \frac{1}{T_n\left(\frac{\lambda+1}{\lambda-1} \right)}\leq 2\left(\frac{\sqrt{\lambda}-1}{\sqrt{\lambda}+1}\right)^n ∣∣Tn (x)∣∣C[a,b]=∣Tn (c)∣1=Tn(λ−1λ+1)1≤2(λ+1λ−1)n
并且这个估计是较紧凑的。将会在Chebyshev迭代和共轭梯度的收敛速度分析中用到这个结论。
Chebyshev迭代是线性非定常迭代,其迭代使用的矩阵/系数在每个迭代步都会发生变化。而任意的单步线性定常迭代都可以表述为最简单的Richardson迭代+预处理的组合。因此从Richardson迭代出发,引入Krylov子空间的概念,然后加以适当改造得到Chebyshev迭代。
Richardson迭代是最简单的迭代格式,它在每一步都加上一个修正量,此修正量就简单地取为当前迭代结果的残差:
x ( i + 1 ) = x ( i ) + r ( i ) = x ( i ) + b − A x ( i ) = ( I − A ) x ( i ) + b \bm{x}^{(i+1)}=\bm{x}^{(i)}+\bm{r}^{(i)}=\bm{x}^{(i)}+\bm{b}-\bm{A}\bm{x}^{(i)}=(\bm{I}-\bm{A})\bm{x}^{(i)}+\bm{b} x(i+1)=x(i)+r(i)=x(i)+b−Ax(i)=(I−A)x(i)+b
r ( i + 1 ) = b − A x ( i + 1 ) = b − A x ( i ) − A r ( i ) = ( I − A ) r ( i ) = . . . = ( I − A ) i + 1 r ( 0 ) \bm{r}^{(i+1)}=\bm{b}-\bm{A}\bm{x}^{(i+1)}=\bm{b}-\bm{A}\bm{x}^{(i)}-\bm{A}\bm{r}^{(i)} =(\bm{I}-\bm{A})\bm{r}^{(i)}=...=(\bm{I}-\bm{A})^{i+1}\bm{r}^{(0)} r(i+1)=b−Ax(i+1)=b−Ax(i)−Ar(i)=(I−A)r(i)=...=(I−A)i+1r(0)
由残差与误差的关系有 e ( i ) = A − 1 r ( i ) \bm{e}^{(i)}=\bm{A}^{-1}\bm{r}^{(i)} e(i)=A−1r(i),可知相应有 e ( i + 1 ) = ( I − A ) e ( i ) \bm{e}^{(i+1)}=(\bm{I}-\bm{A})\bm{e}^{(i)} e(i+1)=(I−A)e(i)。于是在第 m m m步得到的迭代结果为
x ( m ) = x ( 0 ) + ∑ i = 0 m − 1 r ( i ) = x ( 0 ) + ∑ i = 0 m − 1 ( I − A ) i r ( 0 ) ∈ x ( 0 ) + K m ( r ( 0 ) ) \bm{x}^{(m)}=\bm{x}^{(0)}+\sum_{i=0}^{m-1}\bm{r}^{(i)}=\bm{x}^{(0)}+\sum_{i=0}^{m-1}(\bm{I}-\bm{A})^{i}\bm{r}^{(0)}\in\bm{x}^{(0)}+\bm{K_m}(\bm{r}^{(0)}) x(m)=x(0)+i=0∑m−1r(i)=x(0)+i=0∑m−1(I−A)ir(0)∈x(0)+Km(r(0))
其中 K m ( r ( 0 ) ) \bm{K_m}(\bm{r}^{(0)}) Km(r(0))是由 r ( 0 ) \bm{r}^{(0)} r(0)生成的Krylov子空间,其中的元素是用 A \bm{A} A反复作用于 r ( 0 ) \bm{r}^{(0)} r(0)得到的 r ( 0 ) , A r ( 0 ) , A 2 r ( 0 ) , . . . \bm{r}^{(0)},\bm{Ar}^{(0)},\bm{A^2r}^{(0)},... r(0),Ar(0),A2r(0),...等的线性组合。
任何的单步定常迭代格式,比如给定 A = M − N \bm{A}=\bm{M}-\bm{N} A=M−N,其中 M \bm{M} M为预处理矩阵,则迭代可以写成
x ( i + 1 ) = M − 1 N x ( i ) + M − 1 b = M − 1 ( M − A ) x ( i ) + M − 1 b \bm{x}^{(i+1)}=\bm{M}^{-1}\bm{N}\bm{x}^{(i)}+\bm{M}^{-1}\bm{b}=\bm{M}^{-1}(\bm{M}-\bm{A})\bm{x}^{(i)}+\bm{M}^{-1}\bm{b} x(i+1)=M−1Nx(i)+M−1b=M−1(M−A)x(i)+M−1b
而对 A x = b \bm{Ax}=\bm{b} Ax=b做预处理后得到的 M − 1 A x = M − 1 b \bm{M^{-1}Ax}=\bm{M^{-1}b} M−1Ax=M−1b,再进行Richardson迭代,可以得到
x ( i + 1 ) = x ( i ) + r ( i ) = x ( i ) + M − 1 b − M − 1 A x ( i ) \bm{x}^{(i+1)}=\bm{x}^{(i)}+\bm{r}^{(i)}=\bm{x}^{(i)}+\bm{M^{-1}b}-\bm{M^{-1}}\bm{A}\bm{x}^{(i)} x(i+1)=x(i)+r(i)=x(i)+M−1b−M−1Ax(i)
可见是等价的,所以任何的单步定常迭代形式都可以写成预处理后的Richardson迭代(即当前迭代值+修正量)的形式。
原始的Richardson迭代是最简单地取了 M = I \bm{M}=\bm{I} M=I(最好计算,但最不好近似)来做预处理。现在采用非定常,即考虑每步迭代不那么naive,而是选用一个与当前步 i i i有关地矩阵 M i \bm{M_i} Mi做预处理,假设 M i = τ i M \bm{M_i}=\tau_i\bm{M} Mi=τiM由同一个矩阵 M \bm{M} M生成。同样类似Richardson迭代的好计算的想法,取 M = I \bm{M}=\bm{I} M=I,故有 M i = τ i I \bm{M_i}=\tau_i\bm{I} Mi=τiI。所以残量的递推关系成为
r ( i + 1 ) = ( I − τ i A ) r ( i ) = ( I − τ i A ) ( I − τ i − 1 A ) . . . ( I − τ 0 A ) r ( 0 ) \bm{r}^{(i+1)}=(\bm{I}-\tau_i\bm{A})\bm{r}^{(i)}=(\bm{I}-\tau_i\bm{A})(\bm{I}-\tau_{i-1}\bm{A})...(\bm{I}-\tau_0\bm{A})\bm{r}^{(0)} r(i+1)=(I−τiA)r(i)=(I−τiA)(I−τi−1A)...(I−τ0A)r(0)
对于误差 e ( i ) \bm{e}^{(i)} e(i)也同样有此关系,所以有
∣ ∣ e ( i ) ∣ ∣ ∣ ∣ e ( 0 ) ∣ ∣ ≤ ∣ ∣ ( I − τ i − 1 A ) . . . ( I − τ 0 A ) ∣ ∣ \frac{||\bm{e}^{(i)}||}{||\bm{e}^{(0)}||}\leq|| (\bm{I}-\tau_{i-1}\bm{A})...(\bm{I}-\tau_0\bm{A}) || ∣∣e(0)∣∣∣∣e(i)∣∣≤∣∣(I−τi−1A)...(I−τ0A)∣∣
我们希望构造出来的结果(即 τ 0 , τ 1 , . . . \tau_0,\tau_1,... τ0,τ1,...等的取值)能使残量(误差)收缩得最小,即求解如下的优化问题:
inf τ 0 , . . . , τ i − 1 ∣ ∣ ( I − τ i − 1 A ) . . . ( I − τ 0 A ) ∣ ∣ {\underset {\tau_0,...,\tau_{i-1}} {\operatorname {inf} }} || (\bm{I}-\tau_{i-1}\bm{A})...(\bm{I}-\tau_0\bm{A}) || τ0,...,τi−1inf∣∣(I−τi−1A)...(I−τ0A)∣∣
假设 A \bm{A} A是对称阵(这些强加的适用条件后面汇总来看),那么存在正交阵 P \bm{P} P(如果 A \bm{A} A是Hermite矩阵,则 P \bm{P} P为酉矩阵)使得 A \bm{A} A能相似对角化,且取2-范数时有 ∣ ∣ P ∣ ∣ 2 = 1 ||\bm{P}||_2=1 ∣∣P∣∣2=1。
A = P d i a g ( λ 1 , λ 2 , . . . , λ n ) P T = P Λ P T \bm{A}=\bm{P} \mathrm{diag}(\lambda_1,\lambda_2,...,\lambda_n)\bm{P}^T=\bm{P}\bm{\Lambda} \bm{P}^T A=Pdiag(λ1,λ2,...,λn)PT=PΛPT
那么有
∣ ∣ ( I − τ i − 1 A ) . . . ( I − τ 0 A ) ∣ ∣ 2 = ∣ ∣ P ( I − τ i − 1 Λ ) . . . ( I − τ 0 Λ ) P T ∣ ∣ 2 = ∣ ∣ ( I − τ i − 1 Λ ) . . . ( I − τ 0 Λ ) ∣ ∣ 2 = max λ ∈ σ ( A ) ∣ ( 1 − τ i − 1 λ ) . . . ( 1 − τ 0 λ ) ∣ \begin{aligned} || (\bm{I}-\tau_{i-1}\bm{A})...(\bm{I}-\tau_0\bm{A}) ||_2=& ||\bm{P}(\bm{I}-\tau_{i-1}\bm{\Lambda})...(\bm{I}-\tau_0\bm{\Lambda})\bm{P}^T||_2\\ =&||(\bm{I}-\tau_{i-1}\bm{\Lambda})...(\bm{I}-\tau_0\bm{\Lambda})||_2\\ =&{\underset {\lambda\in\sigma(\bm{A})} {\operatorname {max} }} | (1-\tau_{i-1}\lambda)...(1-\tau_0\lambda)| \\ \end{aligned} ∣∣(I−τi−1A)...(I−τ0A)∣∣2===∣∣P(I−τi−1Λ)...(I−τ0Λ)PT∣∣2∣∣(I−τi−1Λ)...(I−τ0Λ)∣∣2λ∈σ(A)max∣(1−τi−1λ)...(1−τ0λ)∣
而 A \bm{A} A的谱是可以估计的,假设已算出 σ ( A ) ∈ [ λ ‾ , λ ˉ ] \sigma(\bm{A})\in[\underline{\lambda},\bar{\lambda}] σ(A)∈[λ,λˉ]。那么上式可以写成:
max λ ∈ σ ( A ) ∣ ( 1 − τ i − 1 λ ) . . . ( 1 − τ 0 λ ) ∣ ≤ ∣ ∣ ( 1 − τ i − 1 λ ) . . . ( 1 − τ 0 λ ) ∣ ∣ ∞ , [ λ ‾ , λ ˉ ] = ∣ ∣ f ( λ ) ∣ ∣ ∞ , [ λ ‾ , λ ˉ ] \begin{aligned} {\underset {\lambda\in\sigma(\bm{A})} {\operatorname {max} }} | (1-\tau_{i-1}\lambda)...(1-\tau_0\lambda)|&\leq& ||(1-\tau_{i-1}\lambda)...(1-\tau_0\lambda)||_{\infty,[\underline{\lambda},\bar{\lambda}]}\\ &=&||f(\lambda)||_{\infty,[\underline{\lambda},\bar{\lambda}]}\\ \end{aligned} λ∈σ(A)max∣(1−τi−1λ)...(1−τ0λ)∣≤=∣∣(1−τi−1λ)...(1−τ0λ)∣∣∞,[λ,λˉ]∣∣f(λ)∣∣∞,[λ,λˉ]
左边的原式是一个绝对值,现在右边看成是一个关于 λ \lambda λ的多项式函数 f ( λ ) = ( 1 − τ i − 1 λ ) . . . ( 1 − τ 0 λ ) f(\lambda)=(1-\tau_{i-1}\lambda)...(1-\tau_0\lambda) f(λ)=(1−τi−1λ)...(1−τ0λ)的无穷范数。该多项式函数有 i i i个实单根: 1 τ 0 , . . . , 1 τ i − 1 \frac{1}{\tau_0},...,\frac{1}{\tau_{i-1}} τ01,...,τi−11。
而由之前的结论,定义在 [ λ ‾ , λ ˉ ] [\underline{\lambda},\bar{\lambda}] [λ,λˉ]上的Chebyshev多项式 T i ^ ( λ ) \widehat{T_i}(\lambda) Ti (λ)在开区间 ( λ ‾ , λ ˉ ) (\underline{\lambda},\bar{\lambda}) (λ,λˉ)内有 i i i个实单根,且 T i ^ ( λ ) = inf P i ∈ P i , P i ( 0 ) = 1 ∣ ∣ P i ∣ ∣ ∞ , [ λ ‾ , λ ˉ ] \widehat{T_i}(\lambda)={\underset {P_i\in\mathbf{P_i},P_i(0)=1}{\operatorname {inf} }} ||P_i||_{\infty,[\underline{\lambda},\bar{\lambda}]} Ti (λ)=Pi∈Pi,Pi(0)=1inf∣∣Pi∣∣∞,[λ,λˉ].
注意当 A \bm{A} A为对称正定阵时, 0 ∉ [ λ ‾ , λ ˉ ] 0\notin[\underline{\lambda},\bar{\lambda}] 0∈/[λ,λˉ],所以 inf P i ∈ P i , P i ( 0 ) = 1 ∣ ∣ P i ∣ ∣ ∞ , [ λ ‾ , λ ˉ ] {\underset {P_i\in\mathbf{P_i},P_i(0)=1}{\operatorname {inf} }} ||P_i||_{\infty,[\underline{\lambda},\bar{\lambda}]} Pi∈Pi,Pi(0)=1inf∣∣Pi∣∣∞,[λ,λˉ]的下界恰好能被原问题的 f ( λ ) f(\lambda) f(λ)取到。此时
P i ∗ ( λ ) = T i ^ ( λ ) = T i ~ ( λ ) T i ~ ( 0 ) = T i ( λ − 1 2 ( λ ˉ + λ ‾ ) 1 2 ( λ ˉ − λ ‾ ) ) T i ( 0 − 1 2 ( λ ˉ + λ ‾ ) 1 2 ( λ ˉ − λ ‾ ) ) = ( 1 − τ i − 1 ( i ) λ ) . . . ( 1 − τ 0 ( i ) λ ) P_i^*(\lambda)=\widehat{T_i}(\lambda)=\frac{\widetilde{T_i}(\lambda)}{\widetilde{T_i}(0)} =\frac{T_i\left( \frac{\lambda-\frac{1}{2}(\bar{\lambda}+\underline{\lambda})} {\frac{1}{2} (\bar{\lambda}-\underline{\lambda})} \right)}{T_i\left( \frac{0-\frac{1}{2}(\bar{\lambda}+\underline{\lambda})} {\frac{1}{2} (\bar{\lambda}-\underline{\lambda})} \right)}= (1-\tau_{i-1}^{(i)}\lambda)...(1-\tau_{0}^{(i)}\lambda) Pi∗(λ)=Ti (λ)=Ti (0)Ti (λ)=Ti(21(λˉ−λ)0−21(λˉ+λ))Ti(21(λˉ−λ)λ−21(λˉ+λ))=(1−τi−1(i)λ)...(1−τ0(i)λ)
其中 τ j ( i ) \tau_j^{(i)} τj(i)的上标表示与迭代次数 i i i有关。所以原问题的 i i i个实单根就是定义在 [ λ ‾ , λ ˉ ] [\underline{\lambda},\bar{\lambda}] [λ,λˉ]上的Chebyshev多项式的根。单步的迭代格式写成
x ( 1 ) = x ( 0 ) + τ 0 ( i ) r ( 0 ) . . . x ( j ) = x ( j − 1 ) + τ j − 1 ( i ) r ( j − 1 ) . . . x ( i ) = x ( i − 1 ) + τ i − 1 ( i ) r ( i − 1 ) \begin{aligned} \bm{x}^{(1)}&=&\bm{x}^{(0)}+\tau_0^{(i)}\bm{r}^{(0)}\\ &...&\\ \bm{x}^{(j)}&=&\bm{x}^{(j-1)}+\tau_{j-1}^{(i)}\bm{r}^{(j-1)}\\ &...&\\ \bm{x}^{(i)}&=&\bm{x}^{(i-1)}+\tau_{i-1}^{(i)}\bm{r}^{(i-1)}\\ \end{aligned} x(1)x(j)x(i)=...=...=x(0)+τ0(i)r(0)x(j−1)+τj−1(i)r(j−1)x(i−1)+τi−1(i)r(i−1)
Chebyshev迭代的收敛速度优势,应当通过进行一次 i i i步的Chebyshev迭代,和进行 i i i次的单步定常迭代来比较。
由Chebyshev的逼近性质,可以得到Chebyshev的迭代收敛速度为
∣ ∣ e ( i ) ∣ ∣ ∣ ∣ e ( 0 ) ∣ ∣ ≤ ∣ ∣ ( 1 − τ i − 1 λ ) . . . ( 1 − τ 0 λ ) ∣ ∣ ∞ , [ λ ‾ , λ ˉ ] = 1 ∣ T i ~ ( 0 ) ∣ = 1 ∣ T i ( 0 − λ ˉ + λ ‾ 2 λ ˉ − λ ‾ 2 ) ∣ = 1 ∣ T i ( λ ˉ λ ‾ + 1 λ ˉ λ ‾ − 1 ) ∣ = 1 ∣ T i ( α + 1 α − 1 ) ∣ ≤ ≈ 2 ( α − 1 α + 1 ) i \begin{aligned} \frac{||\bm{e}^{(i)}||}{||\bm{e}^{(0)||}}&\leq&||(1-\tau_{i-1}\lambda)...(1-\tau_0\lambda)||_{\infty,[\underline{\lambda},\bar{\lambda}]}\\ &=&\frac{1}{|\widetilde{T_i}(0)|}=\frac{1}{\left|T_i\left(\frac{0-\frac{\bar{\lambda}+\underline{\lambda}}{2}}{\frac{\bar{\lambda}-\underline{\lambda}}{2}}\right)\right|}\\ &=&\frac{1}{\left| T_i\left( \frac{\frac{\bar{\lambda}}{\underline{\lambda}}+1}{\frac{\bar{\lambda}}{\underline{\lambda}}-1} \right) \right|}=\frac{1}{\left| T_i\left( \frac{\alpha+1}{\alpha-1} \right) \right|}\\ &&\leq\approx2\left( \frac{\sqrt{\alpha}-1}{\sqrt{\alpha}+1} \right)^i \end{aligned} ∣∣e(0)∣∣∣∣e(i)∣∣≤==∣∣(1−τi−1λ)...(1−τ0λ)∣∣∞,[λ,λˉ]∣Ti (0)∣1=∣∣∣∣Ti(2λˉ−λ0−2λˉ+λ)∣∣∣∣1∣∣∣∣Ti(λλˉ−1λλˉ+1)∣∣∣∣1=∣∣Ti(α−1α+1)∣∣1≤≈2(α+1α−1)i
其中 α = λ ˉ λ ‾ > 1 \alpha=\frac{\bar{\lambda}}{\underline{\lambda}}>1 α=λλˉ>1。
而如果做 i i i次单步的定常迭代,每次单步的收敛速度为
P 1 ∗ ( λ ) = 1 ∣ T 1 ( α + 1 α − 1 ) ∣ = 1 ∣ α + 1 α − 1 ∣ = α − 1 α + 1 P_1^*(\lambda)=\frac{1}{\left| T_1\left( \frac{\alpha+1}{\alpha-1} \right) \right|} = \frac{1}{\left| \frac{\alpha+1}{\alpha-1} \right|} = \frac{\alpha-1}{\alpha+1} P1∗(λ)=∣∣T1(α−1α+1)∣∣1=∣∣α−1α+1∣∣1=α+1α−1
连续做 i i i次以后的收敛速度为 ∣ ∣ e ( i ) ∣ ∣ ∣ ∣ e ( 0 ) ∣ ∣ ≤ ( α − 1 α + 1 ) i \frac{||\bm{e}^{(i)}||}{||\bm{e}^{(0)||}}\leq\left( \frac{\alpha-1}{\alpha+1}\right)^i ∣∣e(0)∣∣∣∣e(i)∣∣≤(α+1α−1)i。这显然要比Chebyshev迭代的收敛速度慢。
单步的Chebyshev迭代格式的缺点是 τ j ( i ) \tau_j^{(i)} τj(i)依赖于迭代次数 i i i的取值。自然地想,能不能不依赖于后者的确定?这就可以用上Chebyshev多项式的三项递推关系来解决!
对标准的Chebyshev多项式, T n + 1 ( y ) = 2 y T n ( y ) − T n − 1 ( y ) , . . . , T 1 ( y ) = y , T 0 ( y ) = 1 T_{n+1}(y)=2yT_n(y)-T_{n-1}(y),...,T_1(y)=y,T_0(y)=1 Tn+1(y)=2yTn(y)−Tn−1(y),...,T1(y)=y,T0(y)=1。但需要的是定义在 [ λ ‾ , λ ˉ ] [\underline{\lambda}, \bar{\lambda}] [λ,λˉ]上的Chebyshev多项式,做变换:
T i ~ ( x ) = T i ( y = x − 1 2 ( λ ˉ + λ ‾ ) 1 2 ( λ ˉ − λ ‾ ) ) = T i ( y = a x − y 0 ) \widetilde{T_i}(x)=T_i\left(y=\frac{x-\frac{1}{2}(\bar{\lambda}+\underline{\lambda})}{\frac{1}{2}(\bar{\lambda}-\underline{\lambda})}\right)=T_i(y=ax-y_0) Ti (x)=Ti(y=21(λˉ−λ)x−21(λˉ+λ))=Ti(y=ax−y0)
其中记 y 0 = λ ˉ + λ ‾ λ ˉ − λ ‾ , a = 2 λ ˉ − λ ‾ y_0=\frac{\bar{\lambda}+\underline{\lambda}}{\bar{\lambda}-\underline{\lambda}}, a=\frac{2}{\bar{\lambda}-\underline{\lambda}} y0=λˉ−λλˉ+λ,a=λˉ−λ2。按照 x = 0 x=0 x=0这一点的 T i ~ \widetilde{T_i} Ti 值做归一化: T i ^ ( x ) = T i ~ ( x ) T i ~ ( 0 ) = T i ( a x − y 0 ) T i ( − y 0 ) = T i ( y 0 − a x ) T i ( y 0 ) \widehat{T_i}(x)=\frac{\widetilde{T_i}(x)}{\widetilde{T_i}(0)}=\frac{T_i(ax-y_0)}{T_i(-y_0)}=\frac{T_i(y_0-ax)}{T_i(y_0)} Ti (x)=Ti (0)Ti (x)=Ti(−y0)Ti(ax−y0)=Ti(y0)Ti(y0−ax),因此三项递推关系为
T 0 ^ ( x ) = T 0 ( y 0 − a x ) T 0 ( y 0 ) = 1 T 1 ^ ( x ) = T 1 ( y 0 − a x ) T 1 ( y 0 ) = y 0 − a x y 0 = T 0 ^ ( x ) − a y 0 x T 0 ^ ( x ) . . . . . . T i + 1 ^ ( x ) = T i + 1 ( y 0 − a x ) T i + 1 ( y 0 ) = 2 ( y 0 − a x ) T i ( y 0 − a x ) − T i − 1 ( y 0 − a x ) T i + 1 ( y 0 ) = 2 ( y 0 − a x ) T i ( y 0 ) T i + 1 ( y 0 ) T i ( y 0 − a x ) T i ( y 0 ) − T i − 1 ( y 0 ) T i + 1 ( y 0 ) T i − 1 ( y 0 − a x ) T i − 1 ( y 0 ) = 2 ( y 0 − a x ) T i ( y 0 ) T i + 1 ( y 0 ) T i ^ ( x ) − T i − 1 ( y 0 ) T i + 1 ( y 0 ) T i − 1 ^ ( x ) = 2 y 0 T i ( y 0 ) T i + 1 ( y 0 ) T i ^ ( x ) − T i − 1 ( y 0 ) T i + 1 ( y 0 ) T i − 1 ^ ( x ) − 2 a T i ( y 0 ) T i + 1 ( y 0 ) x T i ^ ( x ) = ( 1 + T i − 1 ( y 0 ) T i + 1 ( y 0 ) ) T i ^ ( x ) − T i − 1 ( y 0 ) T i + 1 ( y 0 ) T i − 1 ^ ( x ) − 2 a T i ( y 0 ) T i + 1 ( y 0 ) x T i ^ ( x ) = α i T i ^ ( x ) + ( 1 − α i ) T i − 1 ^ ( x ) − β i x T i ^ ( x ) \widehat{T_0}(x)=\frac{T_0(y_0-ax)}{T_0(y_0)}=1\\ \widehat{T_1}(x)=\frac{T_1(y_0-ax)}{T_1(y_0)}=\frac{y_0-ax}{y_0}=\widehat{T_0}(x)-\frac{a}{y_0}x\widehat{T_0}(x)\\ ... ...\\ \begin{aligned} \widehat{T_{i+1}}(x)&=\frac{T_{i+1}(y_0-ax)}{T_{i+1}(y_0)}=\frac{2(y_0-ax)T_i(y_0-ax)-T_{i-1}(y_0-ax)}{T_{i+1}(y_0)}\\ &=\frac{2(y_0-ax)T_i(y_0)}{T_{i+1}(y_0)} \frac{T_i(y_0-ax)}{T_i(y_0)}-\frac{T_{i-1}(y_0)}{T_{i+1}(y_0)} \frac{T_{i-1}(y_0-ax)}{T_{i-1}(y_0)}\\ &=\frac{2(y_0-ax)T_i(y_0)}{T_{i+1}(y_0)} \widehat{T_i}(x) -\frac{T_{i-1}(y_0)}{T_{i+1}(y_0)} \widehat{T_{i-1}}(x)\\ &=\frac{2y_0T_i(y_0)}{T_{i+1}(y_0)} \widehat{T_i}(x) -\frac{T_{i-1}(y_0)}{T_{i+1}(y_0)} \widehat{T_{i-1}}(x)-2a\frac{T_i(y_0)}{T_{i+1}(y_0)}x\widehat{T_i}(x)\\ &=\left( 1+\frac{T_{i-1}(y_0)}{T_{i+1}(y_0)} \right) \widehat{T_i}(x) - \frac{T_{i-1}(y_0)}{T_{i+1}(y_0)}\widehat{T_{i-1}}(x) -2a\frac{T_i(y_0)}{T_{i+1}(y_0)}x\widehat{T_i}(x)\\ &=\alpha_i\widehat{T_i}(x) + (1-\alpha_i)\widehat{T_{i-1}}(x) - \beta_ix\widehat{T_i}(x) \end{aligned} T0 (x)=T0(y0)T0(y0−ax)=1T1 (x)=T1(y0)T1(y0−ax)=y0y0−ax=T0 (x)−y0axT0 (x)......Ti+1 (x)=Ti+1(y0)Ti+1(y0−ax)=Ti+1(y0)2(y0−ax)Ti(y0−ax)−Ti−1(y0−ax)=Ti+1(y0)2(y0−ax)Ti(y0)Ti(y0)Ti(y0−ax)−Ti+1(y0)Ti−1(y0)Ti−1(y0)Ti−1(y0−ax)=Ti+1(y0)2(y0−ax)Ti(y0)Ti (x)−Ti+1(y0)Ti−1(y0)Ti−1 (x)=Ti+1(y0)2y0Ti(y0)Ti (x)−Ti+1(y0)Ti−1(y0)Ti−1 (x)−2aTi+1(y0)Ti(y0)xTi (x)=(1+Ti+1(y0)Ti−1(y0))Ti (x)−Ti+1(y0)Ti−1(y0)Ti−1 (x)−2aTi+1(y0)Ti(y0)xTi (x)=αiTi (x)+(1−αi)Ti−1 (x)−βixTi (x)
其中系数 α i \alpha_i αi和 β i \beta_i βi的递归计算方式为
β 0 = 2 a T 0 ( y 0 ) T 1 ( y 0 ) = 2 a y 0 = 4 λ ˉ + λ ‾ 1 β i = 1 2 a T i + 1 ( y 0 ) T i ( y 0 ) = λ ˉ − λ ‾ 4 2 y 0 T i ( y 0 ) − T i − 1 ( y 0 ) T i ( y 0 ) = λ ˉ − λ ‾ 2 y 0 − λ ˉ − λ ‾ 4 T i − 1 ( y 0 ) T i ( y 0 ) = λ ˉ + λ ‾ 2 − λ ˉ − λ ‾ 4 1 2 a β i − 1 = λ ˉ + λ ‾ 2 − ( λ ˉ − λ ‾ 4 ) 2 β i − 1 α i = 2 y 0 T i ( y 0 ) T i + 1 ( y 0 ) = 2 y 0 2 a β i = λ ˉ + λ ‾ 2 β i \beta_0=2a\frac{T_0(y_0)}{T_1(y_0)}=\frac{2a}{y_0}=\frac{4}{\bar{\lambda}+\underline{\lambda}}\\ \begin{aligned} \frac{1}{\beta_i}&=\frac{1}{2a}\frac{T_{i+1}(y_0)}{T_i(y_0)}=\frac{\bar{\lambda}-\underline{\lambda}}{4} \frac{2y_0T_i(y_0)-T_{i-1}(y_0)}{T_i(y_0)}=\frac{\bar{\lambda}-\underline{\lambda}}{2} y_0 - \frac{\bar{\lambda}-\underline{\lambda}}{4} \frac{T_{i-1}(y_0)}{T_i(y_0)}\\ &=\frac{\bar{\lambda}+\underline{\lambda}}{2} - \frac{\bar{\lambda}-\underline{\lambda}}{4} \frac{1}{2a} \beta_{i-1} = \frac{\bar{\lambda}+\underline{\lambda}}{2} - \left(\frac{\bar{\lambda} - \underline{\lambda}}{4} \right)^2 \beta_{i-1} \end{aligned} \\ \alpha_i=2y_0 \frac{T_i(y_0)}{T_{i+1}(y_0)}=\frac{2y_0}{2a}\beta_i=\frac{\bar{\lambda}+\underline{\lambda}}{2} \beta_i β0=2aT1(y0)T0(y0)=y02a=λˉ+λ4βi1=2a1Ti(y0)Ti+1(y0)=4λˉ−λTi(y0)2y0Ti(y0)−Ti−1(y0)=2λˉ−λy0−4λˉ−λTi(y0)Ti−1(y0)=2λˉ+λ−4λˉ−λ2a1βi−1=2λˉ+λ−(4λˉ−λ)2βi−1αi=2y0Ti+1(y0)Ti(y0)=2a2y0βi=2λˉ+λβi
由此对应的两步Chebyshev迭代格式(具体的导出步骤,笔者也不确定)为:
x ( i + 1 ) = α i x ( i ) + ( 1 − α i ) x ( i − 1 ) + β i r ( i ) \bm{x}^{(i+1)}=\alpha_i\bm{x}^{(i)} + (1-\alpha_i)\bm{x}^{(i-1)} + \beta_i\bm{r}^{(i)} x(i+1)=αix(i)+(1−αi)x(i−1)+βir(i)
将原来的代数方程组求解问题 A x = b \bm{Ax}=\bm{b} Ax=b转化为全空间无约束的优化问题,目标函数为
φ = 1 2 ( A x , x ) − ( b , x ) \varphi=\frac{1}{2}(\bm{Ax},\bm{x})-(\bm{b}, \bm{x}) φ=21(Ax,x)−(b,x)
它的驻点 x ∗ \bm{x^*} x∗满足 δ φ ( x ∗ ) = A x ∗ − b = 0 \delta\varphi(\bm{x^*})=\bm{Ax^*}-\bm{b}=0 δφ(x∗)=Ax∗−b=0,即为原方程组的解。目标函数有下界
φ ( x ∗ ) = φ ( A − 1 b ) = − 1 2 ( b , A − 1 b ) = − 1 2 ( A x ∗ , x ∗ ) φ ( x ) − φ ( x ∗ ) = 1 2 ( A ( x − x ∗ ) , x − x ∗ ) = 1 2 ∣ ∣ x − x ∗ ∣ ∣ A ≥ 0 \varphi(\bm{x^*})=\varphi(\bm{A}^{-1}\bm{b})=-\frac{1}{2}(\bm{b},\bm{A^{-1}b})=-\frac{1}{2}(\bm{Ax^*},\bm{x^*})\\ \varphi(\bm{x})-\varphi(\bm{x^*})=\frac{1}{2}\left(\bm{A}(\bm{x}-\bm{x^*}), \bm{x}-\bm{x^*}\right)=\frac{1}{2}||\bm{x}-\bm{x^*}||_{\bm{A}} \geq0 φ(x∗)=φ(A−1b)=−21(b,A−1b)=−21(Ax∗,x∗)φ(x)−φ(x∗)=21(A(x−x∗),x−x∗)=21∣∣x−x∗∣∣A≥0
其中由 A \bm{A} A内积诱导的 A \bm{A} A范数 ∣ ∣ x ∣ ∣ A 2 = ( A x , x ) = ( x , x ) A ||\bm{x}||_{\bm{A}}^2=(\bm{Ax},\bm{x})=(\bm{x},\bm{x})_{\bm{A}} ∣∣x∣∣A2=(Ax,x)=(x,x)A
CG和最速下降都属于子空间搜索方法。如果给定搜索方向 p ( k ) \bm{p}^{(k)} p(k),对此做一维极小搜索,则可以得到该方向的步长 α k \alpha_k αk:
α k = arg min α φ ( x ( k ) + α p ( k ) ) \alpha_k={\underset {\alpha} {\operatorname {arg\,min} }} \space \varphi({\bm{x}^{(k)}}+\alpha\bm{p}^{(k)}) αk=αargmin φ(x(k)+αp(k))
同之前的迭代法,误差和残量之间关系为 e ( k ) = x ( k ) − x ∗ = − A − 1 r ( k ) \bm{e}^{(k)}=\bm{x}^{(k)}-\bm{x^*}=-\bm{A}^{-1}\bm{r}^{(k)} e(k)=x(k)−x∗=−A−1r(k)。
简单地取 p ( k ) = r ( k ) \bm{p}^{(k)}=\bm{r}^{(k)} p(k)=r(k),即当前的残量方向。
∣ ∣ e ( k + 1 ) ∣ ∣ A 2 = ∣ ∣ e ( k ) + α k r ( k ) ∣ ∣ A 2 = ( A e ( k ) + α k A r ( k ) , e ( k ) + α k r ( k ) ) = ∣ ∣ e ( k ) ∣ ∣ A 2 + ∣ ∣ α k r ( k ) ∣ ∣ A 2 − 2 ( r ( k ) , r ( k ) ) = ∣ ∣ e ( k ) ∣ ∣ A 2 − α k ( r ( k ) , r ( k ) ) = ∣ ∣ e ( k ) ∣ ∣ A 2 − ( r ( k ) , r ( k ) ) ( r ( k ) , r ( k ) ) ( r ( k ) , r ( k ) ) A = ∣ ∣ e ( k ) ∣ ∣ A 2 ( 1 − 1 ( r ( k ) , r ( k ) ) A ( r ( k ) , r ( k ) ) ( r ( k ) , r ( k ) ) A − 1 ( r ( k ) , r ( k ) ) ) ≤ ∣ ∣ e ( k ) ∣ ∣ A 2 ( 1 − 1 ( λ 1 + λ n ) 2 4 λ 1 λ n ) = ∣ ∣ e ( k ) ∣ ∣ A 2 ( λ 1 − λ n ) 2 ( λ 1 + λ n ) 2 \begin{aligned} ||\bm{e}^{(k+1)}||_{\bm{A}}^2&=||\bm{e}^{(k)}+\alpha_k\bm{r}^{(k)}||_{\bm{A}}^2=\left(\bm{Ae^{(k)}}+\alpha_k\bm{A}\bm{r}^{(k)}, \bm{e}^{(k)}+\alpha_k\bm{r}^{(k)}\right)\\ &=||\bm{e}^{(k)}||_{\bm{A}}^2+||\alpha_k\bm{r}^{(k)}||_{\bm{A}}^2 - 2(\bm{r}^{(k)}, \bm{r}^{(k)})\\ &=||\bm{e}^{(k)}||_{\bm{A}}^2-\alpha_k(\bm{r}^{(k)}, \bm{r}^{(k)})=||\bm{e}^{(k)}||_{\bm{A}}^2-\frac{(\bm{r}^{(k)},\bm{r}^{(k)})(\bm{r}^{(k)},\bm{r}^{(k)})}{{(\bm{r}^{(k)},\bm{r}^{(k)})}_{\bm{A}}}\\ &=||\bm{e}^{(k)}||_{\bm{A}}^2\left( 1 - \frac{1}{ \frac{(\bm{r}^{(k)},\bm{r}^{(k)})_{\bm{A}}}{(\bm{r}^{(k)},\bm{r}^{(k)})} \frac{(\bm{r}^{(k)},\bm{r}^{(k)})_{\bm{A}^{-1}}}{(\bm{r}^{(k)},\bm{r}^{(k)})} } \right)\\ &\leq ||\bm{e}^{(k)}||_{\bm{A}}^2\left( 1 - \frac{1}{ \frac{(\lambda_1+\lambda_n)^2}{4\lambda_1\lambda_n} } \right)=||\bm{e}^{(k)}||_{\bm{A}}^2 \frac{(\lambda_1-\lambda_n)^2}{(\lambda_1+\lambda_n)^2} \end{aligned} ∣∣e(k+1)∣∣A2=∣∣e(k)+αkr(k)∣∣A2=(Ae(k)+αkAr(k),e(k)+αkr(k))=∣∣e(k)∣∣A2+∣∣αkr(k)∣∣A2−2(r(k),r(k))=∣∣e(k)∣∣A2−αk(r(k),r(k))=∣∣e(k)∣∣A2−(r(k),r(k))A(r(k),r(k))(r(k),r(k))=∣∣e(k)∣∣A2⎝⎛1−(r(k),r(k))(r(k),r(k))A(r(k),r(k))(r(k),r(k))A−11⎠⎞≤∣∣e(k)∣∣A2(1−4λ1λn(λ1+λn)21)=∣∣e(k)∣∣A2(λ1+λn)2(λ1−λn)2
其中 λ 1 \lambda_1 λ1为最大的特征值, λ n \lambda_n λn为最小的特征值。所以收敛速度为
∣ ∣ e ( k ) ∣ ∣ A ∣ ∣ e ( 0 ) ∣ ∣ A ≤ ( λ 1 − λ n λ 1 + λ n ) k \frac{||\bm{e}^{(k)}||_{\bm{A}}}{||\bm{e}^{(0)}||_{\bm{A}}} \leq \left(\frac{\lambda_1-\lambda_n}{\lambda_1+\lambda_n}\right)^k ∣∣e(0)∣∣A∣∣e(k)∣∣A