作者:牧小熊,华中农业大学,Datawhale成员
知乎 | https://zhuanlan.zhihu.com/p/357361005
之前系统梳理过大数据概念和基础知识(可点击),本文基于PySpark在机器学习实践中的用法,希望对大数据学习的同学起到抛砖引玉的作用。(当数据集较小时,用Pandas足够,当数据量较大时,就需要利用分布式数据处理工具,Spark很适用)
Apache Spark是一个闪电般快速的实时处理框架。它进行内存计算以实时分析数据。由于Apache Hadoop MapReduce仅执行批处理并且缺乏实时处理功能,因此它开始出现。因此,引入了Apache Spark,因为它可以实时执行流处理,也可以处理批处理。
Apache Spark是Scala语言实现的一个计算框架。为了支持Python语言使用Spark,Apache Spark社区开发了一个工具PySpark。我们可以通过Python语言操作RDDs
RDD简介
RDD (Resiliennt Distributed Datasets)
•RDD = 弹性 + 分布式 Datasets
1)分布式,好处是让数据在不同工作节点并行存储,并行计算
2)弹性,指的节点存储时,既可以使用内存,也可以使用外存
•RDD还有个特性是延迟计算,也就是一个完整的RDD运行任务分成两部分:Transformation和Action
Spark RDD的特性:
分布式:可以分布在多台机器上进行并行处理
弹性:计算过程中内存不够时,它会和磁盘进行数据交换
基于内存:可以全部或部分缓存在内存中
只读:不能修改,只能通过转换操作生成新的 RDD
可以参考这位作者的,详细的介绍了pyspark与pandas之间的区别:
https://link.zhihu.com/?target=https%3A//blog.csdn.net/suzyu12345/article/details/79673483
数据集:从1994年人口普查数据库中提取。(后台回复“210323”可获取)
TO DO:预测一个人新收入是否会超过5万美金
参数说明:
创建SparkSession
from pyspark.sql import SparkSession
spark=SparkSession.builder.appName('adult').getOrCreate()
读取数据
df = spark.read.csv('adult.csv', inferSchema = True, header=True) #读取csv文件
df.show(3) #用来显示前3行
注意:pyspark必须创建SparkSession才能像类似于pandas一样操作数据集
我们看看数据集:
cols = df.columns #和pandas一样看列名
df.printSchema()
root
|-- age: integer (nullable = true)
|-- workclass: string (nullable = true)
|-- fnlwgt: integer (nullable = true)
|-- education: string (nullable = true)
|-- education-num: integer (nullable = true)
|-- marital-status: string (nullable = true)
|-- occupation: string (nullable = true)
|-- relationship: string (nullable = true)
|-- race: string (nullable = true)
|-- sex: string (nullable = true)
|-- capital-gain: integer (nullable = true)
|-- capital-loss: integer (nullable = true)
|-- hours-per-week: integer (nullable = true)
|-- native-country: string (nullable = true)
|-- income: string (nullable = true)
#找到所有的string类型的变量
#dtypes用来看数据变量类型
cat_features = [item[0] for item in df.dtypes if item[1]=='string']
# 需要删除 income列,否则标签泄露
cat_features.remove('income')
#找到所有数字变量
num_features = [item[0] for item in df.dtypes if item[1]!='string']
对于类别变量我们需要进行编码,在pyspark中提供了StringIndexer, OneHotEncoder, VectorAssembler特征编码模式:
from pyspark.ml import Pipeline
from pyspark.ml.feature import StringIndexer, OneHotEncoder, VectorAssembler
stages = []
for col in cat_features:
# 字符串转成索引
string_index = StringIndexer(inputCol = col, outputCol = col + 'Index')
# 转换为OneHot编码
encoder = OneHotEncoder(inputCols=[string_index.getOutputCol()], outputCols=[col + "_one_hot"])
# 将每个字段的转换方式 放到stages中
stages += [string_index, encoder]
# 将income转换为索引
label_string_index = StringIndexer(inputCol = 'income', outputCol = 'label')
# 添加到stages中
stages += [label_string_index]
# 类别变量 + 数值变量
assembler_cols = [c + "_one_hot" for c in cat_features] + num_features
assembler = VectorAssembler(inputCols=assembler_cols, outputCol="features")
stages += [assembler]
# 使用pipeline完成数据处理
pipeline = Pipeline(stages=stages)
pipeline_model = pipeline.fit(df)
df = pipeline_model.transform(df)
selected_cols = ["label", "features"] + cols
df = df.select(selected_cols)
因为pyspark显示的数据比较像Mysql 那样不方便观看,因此我们转成pandas:
import pandas as pd
pd.DataFrame(df.take(20), columns = df.columns)
通过pandas发现,好像还有较多字符串变量,难道特征编码失败了?
原来是使用VectorAssembler直接将特征转成了features这一列,pyspark做ML时 需要特征编码好了并做成向量列,
到这里,数据的特征工程就做好了。
分割数据集 测试集
train, test = df.randomSplit([0.7, 0.3], seed=2021)
print(train.count())
print(test.count())
22795
9766
可以看到,训练集和测试集安装7:3的比例分割了,接下来就是构建模型进行训练。
逻辑回归
from pyspark.ml.classification import LogisticRegression
# 创建模型
lr = LogisticRegression(featuresCol = 'features', labelCol = 'label',maxIter=10)
lr_model = lr.fit(train)
可以看到ML的用法和sklearn非常的像,因此使用起来也是相当的方便。
#结果预测
predictions = lr_model.transform(test)
看看predictions的结构
predictions.printSchema()
root
|-- label: double (nullable = false)
|-- features: vector (nullable = true)
|-- age: integer (nullable = true)
|-- workclass: string (nullable = true)
|-- fnlwgt: integer (nullable = true)
|-- education: string (nullable = true)
|-- education-num: integer (nullable = true)
|-- marital-status: string (nullable = true)
|-- occupation: string (nullable = true)
|-- relationship: string (nullable = true)
|-- race: string (nullable = true)
|-- sex: string (nullable = true)
|-- capital-gain: integer (nullable = true)
|-- capital-loss: integer (nullable = true)
|-- hours-per-week: integer (nullable = true)
|-- native-country: string (nullable = true)
|-- income: string (nullable = true)
|-- rawPrediction: vector (nullable = true)
|-- probability: vector (nullable = true)
|-- prediction: double (nullable = false)
抽取需要的信息
selected = predictions.select("label", "prediction", "probability", "age", "occupation")
display(selected)
selected.show(4)
技术AUC值
from pyspark.ml.evaluation import BinaryClassificationEvaluator
# 模型评估,通过原始数据 rawPrediction计算AUC
evaluator = BinaryClassificationEvaluator(rawPredictionCol="rawPrediction")
print('AUC:', evaluator.evaluate(predictions))
AUC:0.9062153434371653
进行网格调参
from pyspark.ml.tuning import ParamGridBuilder, CrossValidator
# 创建网络参数,用于交叉验证
param_grid = (ParamGridBuilder()
.addGrid(lr.regParam, [0.01, 0.5, 2.0])
.addGrid(lr.elasticNetParam, [0.0, 0.5, 1.0])
.addGrid(lr.maxIter, [1, 5, 10])
.build())
# 五折交叉验证,设置模型,网格参数,验证方法,折数
cv = CrossValidator(estimator=lr, estimatorParamMaps=param_grid, evaluator=evaluator, numFolds=5)
# 交叉验证运行
cv_model = cv.fit(train)
# 对于测试数据,使用五折交叉验证
predictions = cv_model.transform(test)
print('AUC:', evaluator.evaluate(predictions))
AUC:0.9054096433333642
决策树模型
from pyspark.ml.classification import DecisionTreeClassifier
# 创建决策树模型
dt = DecisionTreeClassifier(featuresCol = 'features', labelCol = 'label', maxDepth = 3)
dt_model = dt.fit(train)
#查看决策树结构
print(dt_model._call_java('toDebugString'))
DecisionTreeClassificationModel: uid=DecisionTreeClassifier_4bd113e9a3c2, depth=3, numNodes=11, numClasses=2, numFeatures=100
If (feature 23 in {0.0})
If (feature 97 <= 7792.0)
Predict: 0.0
Else (feature 97 > 7792.0)
If (feature 94 <= 19.5)
Predict: 0.0
Else (feature 94 > 19.5)
Predict: 1.0
Else (feature 23 not in {0.0})
If (feature 96 <= 12.5)
If (feature 97 <= 3368.0)
Predict: 0.0
Else (feature 97 > 3368.0)
Predict: 1.0
Else (feature 96 > 12.5)
Predict: 1.0
predictions = dt_model.transform(test)
predictions.printSchema()
root
|-- label: double (nullable = false)
|-- features: vector (nullable = true)
|-- age: integer (nullable = true)
|-- workclass: string (nullable = true)
|-- fnlwgt: integer (nullable = true)
|-- education: string (nullable = true)
|-- education-num: integer (nullable = true)
|-- marital-status: string (nullable = true)
|-- occupation: string (nullable = true)
|-- relationship: string (nullable = true)
|-- race: string (nullable = true)
|-- sex: string (nullable = true)
|-- capital-gain: integer (nullable = true)
|-- capital-loss: integer (nullable = true)
|-- hours-per-week: integer (nullable = true)
|-- native-country: string (nullable = true)
|-- income: string (nullable = true)
|-- rawPrediction: vector (nullable = true)
|-- probability: vector (nullable = true)
|-- prediction: double (nullable = false)
#计算AUC值
from pyspark.ml.evaluation import BinaryClassificationEvaluator
evaluator = BinaryClassificationEvaluator()
evaluator.evaluate(predictions)
0.7455098804457034
网格搜参数
from pyspark.ml.tuning import ParamGridBuilder, CrossValidator
param_grid = (ParamGridBuilder()
.addGrid(dt.maxDepth, [1, 2, 6, 10])
.addGrid(dt.maxBins, [20, 40, 80])
.build())
# 设置五折交叉验证
cv = CrossValidator(estimator=dt, estimatorParamMaps=param_grid, evaluator=evaluator, numFolds=5)
# 运行cv
cv_model = cv.fit(train)
# 查看最优模型
print("numNodes = ", cv_model.bestModel.numNodes)
print("depth = ", cv_model.bestModel.depth)
numNodes = 429
depth = 10
# 使用五折交叉验证进行预测
predictions = cv_model.transform(test)
evaluator.evaluate(predictions)
0.7850384321616918
随机森林
from pyspark.ml.classification import RandomForestClassifier
# 随机森林
rf = RandomForestClassifier(featuresCol = 'features', labelCol = 'label')
rf_model = rf.fit(train)
predictions = rf_model.transform(test)
predictions.printSchema()
selected = predictions.select("label", "prediction", "probability", "age", "occupation")
display(selected)
evaluator = BinaryClassificationEvaluator()
evaluator.evaluate(predictions)
0.8932162982538805
一样的方法
param_grid = (ParamGridBuilder()
.addGrid(rf.maxDepth, [3, 5, 7])
.addGrid(rf.maxBins, [20, 50])
.addGrid(rf.numTrees, [5, 10])
.build())
cv = CrossValidator(estimator=rf, estimatorParamMaps=param_grid, evaluator=evaluator, numFolds=5)
# 运行CV(大约6分钟)
cv_model = cv.fit(train)
predictions = cv_model.transform(test)
evaluator.evaluate(predictions)
0.8948376797236669
查看模型的结构和特征重要性
best_model
RandomForestClassificationModel: uid=RandomForestClassifier_15bbbdd6642a, numTrees=10, numClasses=2, numFeatures=100
best_model.featureImportances
太长了省略
df.schema['features'].metadata
temp = df.schema["features"].metadata["ml_attr"]["attrs"]
df_importance = pd.DataFrame(columns=['idx', 'name'])
for attr in temp['numeric']:
temp_df = {}
temp_df['idx'] = attr['idx']
temp_df['name'] = attr['name']
#print(temp_df)
df_importance = df_importance.append(temp_df, ignore_index=True)
#print(attr['idx'], attr['name'])
#print(attr)
#break
df_importance
for attr in temp['binary']:
temp_df = {}
temp_df['idx'] = attr['idx']
temp_df['name'] = attr['name']
df_importance = df_importance.append(temp_df, ignore_index=True)
df_importance
对特征重要性进行可视化
df_temp = pd.DataFrame(best_model.featureImportances.toArray())
df_temp.columns = ['feature_importance']
df_importance = df_importance.merge(df_temp, left_index=True, right_index=True)
df_importance.sort_values(by=['feature_importance'], ascending=False, inplace=True)
df_importance
本节选用了一个常规的数据集,需要通过UCI提供的数据预测个人收入是否会大于5万,本节用PySpark对数据进行了读取,特征的编码以及特征的构建,并分别使用了逻辑回归、决策树以及随机森林算法展示数据预测的过程。
spark通过封装成pyspark后使用难度降低了很多,而且pyspark的ML包提供了基本的机器学习模型,可以直接使用,模型的使用方法和sklearn比较相似,因此学习成本较低。
往期精彩回顾
适合初学者入门人工智能的路线及资料下载机器学习及深度学习笔记等资料打印机器学习在线手册深度学习笔记专辑《统计学习方法》的代码复现专辑
AI基础下载机器学习的数学基础专辑
本站qq群851320808,加入微信群请扫码: