环境:pycharm + win10 + conda3 + python3.6
首先创建一个神经网络类NeuralNetwork:
import numpy as np
#定义一个神经网络类
class NeuralNetwork:
#初始化参数
def __init__(self,layers,alpha=0.1):
self.Weight = []
self.layers = layers
self.alpha = alpha
#遍历从第一层到最后两层之前停止
for i in np.arange(0,len(layers) - 2):
#构造MxN权重矩阵,节点相连,增加一个偏置项,正态化数据:除以当前层节点数平方根,得稳定方差
weight = np.random.randn(layers[i]+1,layers[i+1]+1)
self.Weight.append(weight/np.sqrt(layers[i]))
#最后两层输入连接需要一个偏置项,输入不需要
weight = np.random.randn(layers[-2] + 1, layers[-1])
self.Weight.append(weight/np.sqrt(layers[-2]))
#返回网络结构信息
def __repr__(self):
return "NeuralNetwork:{}".format("-".join(str(l) for l in self.layers))
#定义sigmoid激活函数
def sigmoid(self,x):
return 1.0/(1+np.exp(-x))
#sigmoid导数
def sigmoid_deriv(self,x):
return x * (1-x)
#定义fit函数训练神经网络:X训练数据、y是X中单个数据对应的类别标签、epochs训练网络次数、displayUpdate显示更新间隔
def fit(self,X,y,epochs = 1000, displayUpdate=100):
#插入一列偏置项特征矩阵
X = np.c_[X,np.ones(X.shape[0])]
for epoch in np.arange(0,epochs):
for (x,target) in zip(X,y):
self.fit_partial(x,target)
if epoch == 0 or (epoch +1) % displayUpdate ==0:
loss = self.calculate_loss(X,y)
print("epoch={}, loss={:.6f}".format(epoch+1,loss))
def fit_partial(self,x,y):
#初始化列表,存储数据点x通过前向传播网络每层输出激活数据
A = [np.atleast_2d(x)]
#前向传播
for layer in np.arange(0,len(self.Weight)):
#点积计算
net = A[layer].dot(self.Weight[layer])
out = self.sigmoid(net)
A.append(out)
#反向传播,计算误差
error = A[-1] - y
D = [error*self.sigmoid_deriv(A[-1])]
#通过学习率更新权重矩阵
for layer in np.arange(len(A) - 2, 0, -1):
delta = D[-1].dot(self.Weight[layer].T)
delta = delta * self.sigmoid_deriv(A[layer])
D.append(delta)
#更新权重
D = D[::-1]
for layer in np.arange(0,len(self.Weight)):
self.Weight[layer] += -self.alpha * A[layer].T.dot(D[layer])
#预测
def predict(self, X, addBias=True):
p = np.atleast_2d(X)
#判断偏置项是否存在
if addBias:
p = np.c_[p, np.ones((p.shape[0]))]
for layer in np.arange(0, len(self.Weight)):
p = self.sigmoid(np.dot(p, self.Weight[layer]))
return p
#损失函数
def calculate_loss(self, X, targets):
targets = np.atleast_2d(targets)
predictions = self.predict(X, addBias=False)
loss = 0.5 * np.sum((predictions - targets) ** 2)
return loss
通过sklearn下载手写字体数据集,并进行训练,先安装sklearn包:
conda install scikit-learn
训练代码:
from neural_network import NeuralNetwork
from sklearn.preprocessing import LabelBinarizer
from sklearn.model_selection import train_test_split
from sklearn.metrics import classification_report
from sklearn import datasets
import matplotlib.pyplot as plt
import numpy as np
def mnist_train():
# 下载
print("loading MNIST dataset...")
digits = datasets.load_digits()
data = digits.data.astype("float")
data = (data - data.min()) / (data.max() - data.min())
print("samples:{}, dimension:{}".format(data.shape[0], data.shape[1]))
# 训练/测试集
(trainX, testX, trainY, testY) = train_test_split(data, digits.target, test_size=0.25)
# 将标签转化为向量
trainY = LabelBinarizer().fit_transform(trainY)
testY = LabelBinarizer().fit_transform(testY)
# 训练网络
print("training network...")
nn = NeuralNetwork([trainX.shape[1], 32, 16, 10])
print("{}".format(nn))
nn.fit(trainX, trainY, epochs=1000)
# 评估网络
print("evaluating network...")
predictions = nn.predict(testX)
predictions = predictions.argmax(axis=1)
print(classification_report(testY.argmax(axis=1), predictions))
if __name__ =="__main__":
mnist_train()
结果:
loading MNIST dataset...
samples:1797, dimension:64
training network...
NeuralNetwork:64-32-16-10
epoch=1, loss=605.801722
epoch=100, loss=7.885670
epoch=200, loss=4.572620
epoch=300, loss=3.601540
epoch=400, loss=2.981110
epoch=500, loss=2.804141
epoch=600, loss=2.730295
epoch=700, loss=2.684942
epoch=800, loss=2.654072
epoch=900, loss=2.631717
epoch=1000, loss=2.614806
evaluating network...
precision recall f1-score support
0 1.00 1.00 1.00 46
1 0.93 0.97 0.95 39
2 1.00 1.00 1.00 52
3 0.93 0.98 0.96 44
4 0.98 0.98 0.98 52
5 1.00 0.90 0.95 51
6 1.00 0.98 0.99 54
7 1.00 1.00 1.00 41
8 0.90 0.88 0.89 42
9 0.91 1.00 0.95 29
micro avg 0.97 0.97 0.97 450
macro avg 0.97 0.97 0.97 450
weighted avg 0.97 0.97 0.97 450
环境:
训练代码:
from keras.models import Sequential
from keras.layers.core import Dense
from keras.optimizers import SGD
from sklearn.preprocessing import LabelBinarizer
from sklearn.model_selection import train_test_split
from sklearn.metrics import classification_report
from sklearn import datasets
import matplotlib.pyplot as plt
import numpy as np
def mnist_train():
# 下载mnist数据集,大小有55M
print("loading MNIST dataset...")
dataset = datasets.fetch_mldata("MNIST Original")
#数据缩放到0至1区间
data = dataset.data.astype("float") / 255.0
# 分割训练/测试集
(trainX, testX, trainY, testY) = train_test_split(data, dataset.target, test_size=0.25)
# 将标签转化为向量
lb = LabelBinarizer()
trainY = lb.fit_transform(trainY)
testY = lb.fit_transform(testY)
#定义一个 784-256-128-10网络结构
model = Sequential()
model.add(Dense(256,input_shape=(784,), activation="sigmoid"))
model.add(Dense(128, activation="sigmoid"))
model.add(Dense(10,activation="softmax"))
# 使用SGD优化器训练网络
print("training network...")
sgd = SGD(0.01)
model.compile(loss="categorical_crossentropy", optimizer=sgd,metrics=["accuracy"])
H = model.fit(trainX, trainY, validation_data=(testX, testY),epochs=100,batch_size=128)
# 评估网络
print("evaluating network...")
predictions = model.predict(testX, batch_size=128)
print(classification_report(testY.argmax(axis=1),
predictions.argmax(axis=1),
target_names=[str(x) for x in lb.classes_]))
#显示训练结果
plt.style.use("ggplot")
plt.figure()
plt.plot(np.arange(0,100), H.history["loss"], label="train_loss")
plt.plot(np.arange(0,100), H.history["val_loss"], label="val_loss")
plt.plot(np.arange(0,100), H.history["acc"], label="train_acc")
plt.plot(np.arange(0,100), H.history["val_acc"], label="val_acc")
plt.title("Training Loss and Accuracy")
plt.xlabel("Epoch")
plt.ylabel("Loss/Accuracy")
plt.legend()
plt.savefig("./mnist_keras.png")
if __name__ =="__main__":
mnist_train()
运行一下报错: DeprecationWarning: Function mldata_filename is deprecated; mldata_filename was deprecated in version 0.20 and will be removed in version 0.22. Please use fetch_openml.
解决办法:
手动下载MNIST数据集:
https://github.com/amplab/datascience-sp14/raw/master/lab7/mldata/mnist-original.mat
将下载后的mnist-original.mat
文件放入/home/ubuntu/scikit_learn_data/mldata
路径下
结果:
Using TensorFlow backend.
loading MNIST dataset...
training network...
Train on 52500 samples, validate on 17500 samples
Epoch 1/100
128/52500 [..............................] - ETA: 11:43 - loss: 2.4822 - acc: 0.1016
2688/52500 [>.............................] - ETA: 32s - loss: 2.4141 - acc: 0.0911
4992/52500 [=>............................] - ETA: 17s - loss: 2.3748 - acc: 0.0972
7168/52500 [===>..........................] - ETA: 11s - loss: 2.3545 - acc: 0.1018
9088/52500 [====>.........................] - ETA: 9s - loss: 2.3433 - acc: 0.1039
11264/52500 [=====>........................] - ETA: 7s - loss: 2.3349 - acc: 0.1014
13440/52500 [======>.......................] - ETA: 5s - loss: 2.3283 - acc: 0.1026
15360/52500 [=======>......................] - ETA: 5s - loss: 2.3239 - acc: 0.1054
17280/52500 [========>.....................] - ETA: 4s - loss: 2.3199 - acc: 0.1080
...
Epoch 100/100
128/52500 [..............................] - ETA: 2s - loss: 0.2071 - acc: 0.9531
2048/52500 [>.............................] - ETA: 1s - loss: 0.2768 - acc: 0.9268
3968/52500 [=>............................] - ETA: 1s - loss: 0.2854 - acc: 0.9214
5888/52500 [==>...........................] - ETA: 1s - loss: 0.2810 - acc: 0.9222
7808/52500 [===>..........................] - ETA: 1s - loss: 0.2792 - acc: 0.9214
9984/52500 [====>.........................] - ETA: 1s - loss: 0.2813 - acc: 0.9206
12032/52500 [=====>........................] - ETA: 1s - loss: 0.2812 - acc: 0.9199
14208/52500 [=======>......................] - ETA: 1s - loss: 0.2797 - acc: 0.9205
16256/52500 [========>.....................] - ETA: 0s - loss: 0.2803 - acc: 0.9202
18432/52500 [=========>....................] - ETA: 0s - loss: 0.2766 - acc: 0.9211
20480/52500 [==========>...................] - ETA: 0s - loss: 0.2761 - acc: 0.9203
22272/52500 [===========>..................] - ETA: 0s - loss: 0.2754 - acc: 0.9205
24320/52500 [============>.................] - ETA: 0s - loss: 0.2769 - acc: 0.9201
26496/52500 [==============>...............] - ETA: 0s - loss: 0.2761 - acc: 0.9204
28672/52500 [===============>..............] - ETA: 0s - loss: 0.2733 - acc: 0.9210
30720/52500 [================>.............] - ETA: 0s - loss: 0.2721 - acc: 0.9215
32640/52500 [=================>............] - ETA: 0s - loss: 0.2720 - acc: 0.9216
34560/52500 [==================>...........] - ETA: 0s - loss: 0.2715 - acc: 0.9213
36480/52500 [===================>..........] - ETA: 0s - loss: 0.2714 - acc: 0.9210
38528/52500 [=====================>........] - ETA: 0s - loss: 0.2723 - acc: 0.9208
40576/52500 [======================>.......] - ETA: 0s - loss: 0.2720 - acc: 0.9205
42624/52500 [=======================>......] - ETA: 0s - loss: 0.2730 - acc: 0.9205
44416/52500 [========================>.....] - ETA: 0s - loss: 0.2728 - acc: 0.9206
46336/52500 [=========================>....] - ETA: 0s - loss: 0.2733 - acc: 0.9204
48256/52500 [==========================>...] - ETA: 0s - loss: 0.2727 - acc: 0.9203
50304/52500 [===========================>..] - ETA: 0s - loss: 0.2725 - acc: 0.9203
52352/52500 [============================>.] - ETA: 0s - loss: 0.2733 - acc: 0.9201
52500/52500 [==============================] - 2s 30us/step - loss: 0.2735 - acc: 0.9201 - val_loss: 0.2829 - val_acc: 0.9186
evaluating network...
precision recall f1-score support
0.0 0.94 0.96 0.95 1722
1.0 0.95 0.97 0.96 2046
2.0 0.91 0.89 0.90 1682
3.0 0.92 0.89 0.90 1814
4.0 0.92 0.93 0.93 1734
5.0 0.87 0.88 0.87 1504
6.0 0.94 0.96 0.95 1705
7.0 0.93 0.93 0.93 1816
8.0 0.90 0.88 0.89 1753
9.0 0.89 0.89 0.89 1724
accuracy 0.92 17500
macro avg 0.92 0.92 0.92 17500
weighted avg 0.92 0.92 0.92 17500
Process finished with exit code 0
cifar-10数据集有60000张图片,大小为32x32的RGB图,每一张图的数据量有32x32x3 = 3072。一共有10个类,每个类别有6000张图像。50000张图像用来训练,10000张用来测试。
训练代码:
from keras.models import Sequential
from keras.layers.core import Dense
from keras.optimizers import SGD
from keras.datasets import cifar10
from sklearn.preprocessing import LabelBinarizer
from sklearn.metrics import classification_report
from sklearn import datasets
import matplotlib.pyplot as plt
import numpy as np
def mnist_train():
# 下载cifar10数据集,大小有170M
print("loading CIFAR10 dataset...")
((trainX,trainY),(testX,testY)) = cifar10.load_data()
#数据缩放到0至1区间
trainX = trainX.astype("float") / 255.0
testX = testX.astype("float") / 255.0
#创建矩阵
trainX = trainX.reshape((trainX.shape[0], 3072))
testX = testX.reshape((testX.shape[0],3072))
# 将标签转化为向量
lb = LabelBinarizer()
trainY = lb.fit_transform(trainY)
testY = lb.fit_transform(testY)
#类别标签
labelNames = ["airplane","automobile","bird","cat","deer",
"dog","frog","horse","ship","truck"]
#定义一个 3072-1024-512-10网络结构
model = Sequential()
model.add(Dense(1024,input_shape=(3072,), activation="relu"))
model.add(Dense(512, activation="relu"))
model.add(Dense(10,activation="softmax"))
# 使用SGD优化器训练网络
print("training network...")
sgd = SGD(0.01)
model.compile(loss="categorical_crossentropy", optimizer=sgd,metrics=["accuracy"])
H = model.fit(trainX, trainY, validation_data=(testX, testY),epochs=100,batch_size=128)
# 评估网络
print("evaluating network...")
predictions = model.predict(testX, batch_size=128)
print(classification_report(testY.argmax(axis=1),
predictions.argmax(axis=1),
target_names= labelNames))
#显示训练结果
plt.style.use("ggplot")
plt.figure()
plt.plot(np.arange(0,100), H.history["loss"], label="train_loss")
plt.plot(np.arange(0,100), H.history["val_loss"], label="val_loss")
plt.plot(np.arange(0,100), H.history["acc"], label="train_acc")
plt.plot(np.arange(0,100), H.history["val_acc"], label="val_acc")
plt.title("Training Loss and Accuracy")
plt.xlabel("Epoch")
plt.ylabel("Loss/Accuracy")
plt.legend()
plt.savefig("./cifar10_keras.png")
if __name__ =="__main__":
mnist_train()
结果:
Using TensorFlow backend.
loading CIFAR10 dataset...
Downloading data from https://www.cs.toronto.edu/~kriz/cifar-10-python.tar.gz
8192/170498071 [..............................] - ETA: 3:51:38
24576/170498071 [..............................] - ETA: 2:34:56
40960/170498071 [..............................] - ETA: 2:19:34
57344/170498071 [..............................] - ETA: 2:01:56
73728/170498071 [..............................] - ETA: 1:52:03
90112/170498071 [..............................] - ETA: 1:45:49
...
170401792/170498071 [============================>.] - ETA: 2s
170418176/170498071 [============================>.] - ETA: 2s
170434560/170498071 [============================>.] - ETA: 1s
170450944/170498071 [============================>.] - ETA: 1s
170467328/170498071 [============================>.] - ETA: 0s
170483712/170498071 [============================>.] - ETA: 0s
170500096/170498071 [==============================] - 4585s 27us/step
training network...
Train on 50000 samples, validate on 10000 samples
Epoch 1/100
128/50000 [..............................] - ETA: 7:31 - loss: 2.3651 - acc: 0.0781
1664/50000 [..............................] - ETA: 35s - loss: 2.2779 - acc: 0.1436
3072/50000 [>.............................] - ETA: 19s - loss: 2.2363 - acc: 0.1735
4480/50000 [=>............................] - ETA: 13s - loss: 2.2142 - acc: 0.1833
5888/50000 [==>...........................] - ETA: 10s - loss: 2.1908 - acc: 0.1967
...
47872/50000 [===========================>..] - ETA: 0s - loss: 0.6568 - acc: 0.7823
49280/50000 [============================>.] - ETA: 0s - loss: 0.6572 - acc: 0.7820
50000/50000 [==============================] - 2s 42us/step - loss: 0.6585 - acc: 0.7816 - val_loss: 1.4283 - val_acc: 0.5421
Epoch 100/100
128/50000 [..............................] - ETA: 2s - loss: 0.6698 - acc: 0.7578
1536/50000 [..............................] - ETA: 1s - loss: 0.6496 - acc: 0.7819
2944/50000 [>.............................] - ETA: 1s - loss: 0.6353 - acc: 0.7860
4352/50000 [=>............................] - ETA: 1s - loss: 0.6302 - acc: 0.7891
5632/50000 [==>...........................] - ETA: 1s - loss: 0.6478 - acc: 0.7814
7168/50000 [===>..........................] - ETA: 1s - loss: 0.6438 - acc: 0.7824
8704/50000 [====>.........................] - ETA: 1s - loss: 0.6528 - acc: 0.7792
10112/50000 [=====>........................] - ETA: 1s - loss: 0.6492 - acc: 0.7797
11520/50000 [=====>........................] - ETA: 1s - loss: 0.6623 - acc: 0.7752
12928/50000 [======>.......................] - ETA: 1s - loss: 0.6574 - acc: 0.7767
14336/50000 [=======>......................] - ETA: 1s - loss: 0.6549 - acc: 0.7785
15744/50000 [========>.....................] - ETA: 1s - loss: 0.6556 - acc: 0.7781
17024/50000 [=========>....................] - ETA: 1s - loss: 0.6519 - acc: 0.7803
18560/50000 [==========>...................] - ETA: 1s - loss: 0.6531 - acc: 0.7798
19968/50000 [==========>...................] - ETA: 1s - loss: 0.6532 - acc: 0.7799
21248/50000 [===========>..................] - ETA: 1s - loss: 0.6536 - acc: 0.7804
22528/50000 [============>.................] - ETA: 1s - loss: 0.6548 - acc: 0.7805
23936/50000 [=============>................] - ETA: 0s - loss: 0.6534 - acc: 0.7809
25344/50000 [==============>...............] - ETA: 0s - loss: 0.6505 - acc: 0.7819
26752/50000 [===============>..............] - ETA: 0s - loss: 0.6499 - acc: 0.7820
28160/50000 [===============>..............] - ETA: 0s - loss: 0.6499 - acc: 0.7823
29696/50000 [================>.............] - ETA: 0s - loss: 0.6495 - acc: 0.7821
31104/50000 [=================>............] - ETA: 0s - loss: 0.6498 - acc: 0.7818
32640/50000 [==================>...........] - ETA: 0s - loss: 0.6544 - acc: 0.7801
34048/50000 [===================>..........] - ETA: 0s - loss: 0.6537 - acc: 0.7803
35456/50000 [====================>.........] - ETA: 0s - loss: 0.6542 - acc: 0.7806
36864/50000 [=====================>........] - ETA: 0s - loss: 0.6533 - acc: 0.7805
38144/50000 [=====================>........] - ETA: 0s - loss: 0.6528 - acc: 0.7810
39552/50000 [======================>.......] - ETA: 0s - loss: 0.6508 - acc: 0.7819
40960/50000 [=======================>......] - ETA: 0s - loss: 0.6543 - acc: 0.7805
42368/50000 [========================>.....] - ETA: 0s - loss: 0.6537 - acc: 0.7805
43776/50000 [=========================>....] - ETA: 0s - loss: 0.6526 - acc: 0.7812
45056/50000 [==========================>...] - ETA: 0s - loss: 0.6521 - acc: 0.7815
46464/50000 [==========================>...] - ETA: 0s - loss: 0.6522 - acc: 0.7815
47872/50000 [===========================>..] - ETA: 0s - loss: 0.6522 - acc: 0.7815
49280/50000 [============================>.] - ETA: 0s - loss: 0.6530 - acc: 0.7811
50000/50000 [==============================] - 2s 42us/step - loss: 0.6532 - acc: 0.7810 - val_loss: 1.4354 - val_acc: 0.5334
evaluating network...
precision recall f1-score support
airplane 0.64 0.53 0.58 1000
automobile 0.61 0.69 0.64 1000
bird 0.55 0.36 0.43 1000
cat 0.41 0.33 0.37 1000
deer 0.58 0.37 0.46 1000
dog 0.58 0.32 0.41 1000
frog 0.60 0.65 0.63 1000
horse 0.45 0.76 0.57 1000
ship 0.46 0.84 0.59 1000
truck 0.62 0.48 0.54 1000
accuracy 0.53 10000
macro avg 0.55 0.53 0.52 10000
weighted avg 0.55 0.53 0.52 10000
Process finished with exit code 0
标准前馈神经网络在训练CIFAR-10数据集时,验证损失函数值增大,出现了过拟合现象,通过改变学习率, 网络节点数和深度等优化超参数, 结果并没有多大改善,需要通过卷积神经网来极大地改善准确率。