1.基于模型的方法--线性最小二乘法。
2.代码实践
在odom_calib文件夹下打开终端,运行cmake . make进行编译,./odom_calib运行可执行文件。
3.代码展示。
odom_calib.cpp
#include
#include
#include
#include
#include
#include
#include
#include
using namespace std;
string scan_match_file = "./scan_match.txt"; //存放雷达数据的文件
string odom_file = "./odom.txt"; //存放轮速计数据的文件
int main(int argc, char** argv)
{
// 放置激光雷达的时间和匹配值 t_s s_x s_y s_th
vector> s_data;
// 放置轮速计的时间和左右轮角速度 t_r w_L w_R
vector> r_data;
ifstream fin_s(scan_match_file);
ifstream fin_r(odom_file);
if (!fin_s || !fin_r)
{
cerr << "请在有scan_match.txt和odom.txt的目录下运行此程序" << endl;
return 1;
}
// 读取激光雷达的匹配值
while (!fin_s.eof()) {
double s_t, s_x, s_y, s_th;
fin_s >> s_t >> s_x >> s_y >> s_th;
s_data.push_back(vector({s_t, s_x, s_y, s_th}));
}
fin_s.close();
// 读取两个轮子的角速度
while (!fin_r.eof()) {
double t_r, w_L, w_R;
fin_r >> t_r >> w_L >> w_R;
r_data.push_back(vector({t_r, w_L, w_R}));
}
fin_r.close();
// 第一步:计算中间变量J_21和J_22
Eigen::MatrixXd A;
Eigen::VectorXd b;
// 设置数据长度
A.conservativeResize(5000, 2);
b.conservativeResize(5000);
A.setZero();
b.setZero();
size_t id_r = 0;
size_t id_s = 0;
double last_rt = r_data[0][0];
double w_Lt = 0;
double w_Rt = 0;
while (id_s < 5000)
{
// 激光的匹配信息
const double &s_t = s_data[id_s][0];
const double &s_th = s_data[id_s][3];
// 里程计信息
const double &r_t = r_data[id_r][0];
const double &w_L = r_data[id_r][1];
const double &w_R = r_data[id_r][2];
++id_r;
// 在2帧激光匹配时间内进行里程计角度积分
if (r_t < s_t)
{
double dt = r_t - last_rt;
w_Lt += w_L * dt;
w_Rt += w_R * dt;
last_rt = r_t;
}
else
{
double dt = s_t - last_rt;
w_Lt += w_L * dt;
w_Rt += w_R * dt;
last_rt = s_t;
// 填充A, b矩阵
A(id_s,0) = w_Lt;
A(id_s,1) = w_Rt;
b(id_s) = s_th;
//TODO: (3~5 lines)
//end of TODO
w_Lt = 0;
w_Rt = 0;
++id_s;
}
}
// 进行最小二乘求解
Eigen::Vector2d J21J22;
//TODO: (1~2 lines)
J21J22 = A.colPivHouseholderQr().solve(b);
//end of TODO
const double &J21 = J21J22(0);
const double &J22 = J21J22(1);
cout << "J21: " << J21 << endl;
cout << "J22: " << J22 << endl;
// 第二步,求解轮间距b
Eigen::VectorXd C;
Eigen::VectorXd S;
// 设置数据长度
C.conservativeResize(10000);
S.conservativeResize(10000);
C.setZero();
S.setZero();
id_r = 0;
id_s = 0;
last_rt = r_data[0][0];
double th = 0;
double cx = 0;
double cy = 0;
while (id_s < 5000)
{
// 激光的匹配信息
const double &s_t = s_data[id_s][0];
const double &s_x = s_data[id_s][1];
const double &s_y = s_data[id_s][2];
// 里程计信息
const double &r_t = r_data[id_r][0];
const double &w_L = r_data[id_r][1];
const double &w_R = r_data[id_r][2];
++id_r;
// 在2帧激光匹配时间内进行里程计位置积分
if (r_t < s_t)
{
double dt = r_t - last_rt;
cx += 0.5 * (-J21 * w_L * dt + J22 * w_R * dt) * cos(th);
cy += 0.5 * (-J21 * w_L * dt + J22 * w_R * dt) * sin(th);
th += (J21 * w_L + J22 * w_R) * dt;
last_rt = r_t;
}
else
{
double dt = s_t - last_rt;
cx += 0.5 * (-J21 * w_L * dt + J22 * w_R * dt) * cos(th);
cy += 0.5 * (-J21 * w_L * dt + J22 * w_R * dt) * sin(th);
th += (J21 * w_L + J22 * w_R) * dt;
last_rt = s_t;
// 填充C, S矩阵
C(2*id_s) = cx;
C(2*id_s+1) = cy;
S(2*id_s) = s_x;
S(2*id_s+1) = s_y;
//TODO: (4~5 lines)
//end of TODO
cx = 0;
cy = 0;
th = 0;
++id_s;
}
}
// 进行最小二乘求解,计算b, r_L, r_R
double b_wheel;
double r_L;
double r_R;
b_wheel = C.colPivHouseholderQr().solve(S)[0];
r_L = -J21*b_wheel;
r_R = J22*b_wheel;
//TODO: (3~5 lines)
//end of TODO
cout << "b: " << b_wheel << endl;
cout << "r_L: " << r_L << endl;
cout << "r_R: " << r_R << endl;
cout << "参考答案:轮间距b为0.6m左右,两轮半径为0.1m左右" << endl;
return 0;
}
CMakeLists.txt
cmake_minimum_required( VERSION 2.8 )
project( odom_calib )
set( CMAKE_CXX_COMPILER "g++" )
set( CMAKE_BUILD_TYPE "Release" )
set( CMAKE_CXX_FLAGS "-std=c++11 -march=native -O3" )
set( CMAKE_RUNTIME_OUTPUT_DIRECTORY ${PROJECT_SOURCE_DIR} )
include_directories( "/usr/include/eigen3" )
add_executable( odom_calib odom_calib.cpp )