从数据预处理开始,用最简单的3D的CNN实现五折交叉验证的MRI图像二分类(pytorch)

文章目录

  • 前言
  • 一、将nii图像数据转成npy格式
  • 二、加载数据
    • 1.加载数据,Dataset.py:
    • 1.一些其他函数,utils.py:
  • 二、建模 model.py
  • 二、训练 train.py
  • 二、预测 predict.py
  • 总结

前言

本文从数据预处理开始,基于LeNet搭建一个最简单的3D的CNN,计算医学图像分类常用指标AUC,ACC,Sep,Sen,并用5折交叉验证来提升预测指标,来实现3D的MRI图像二分类

一、将nii图像数据转成npy格式

首先将nii图像数据转成npy格式,方便输入网络
从数据预处理开始,用最简单的3D的CNN实现五折交叉验证的MRI图像二分类(pytorch)_第1张图片
从数据预处理开始,用最简单的3D的CNN实现五折交叉验证的MRI图像二分类(pytorch)_第2张图片

import nibabel as nib
import os
import numpy as np
from skimage.transform import resize
import pandas as pd
def mkdir(path):
    if not os.path.exists(path):
            os.makedirs(path)

img_path = 'E:\TSC\deep_learing_need\data for paper\FLAIR3' #nii文件
save_path = 'E:\TSC\deep_learing_need\data for paper\FLAIR3_npy' #npy文件
mkdir(save_path)
#FLAIR3_000.nii.gz 文件类型命名举例
label_pd = pd.read_excel('E:\TSC\deep_learing_need\clinical_features.xlsx',sheet_name = 'label')#label excel 存放每一个数据的pid和对应的label,如:pid:100,label:0

for img_name in os.listdir(img_path):
    net_data = []
    pid = img_name.split('_')[1].split('.')[0]
    print(pid)
    print(img_name)
    label = label_pd[label_pd['pid'] == int(pid) ]['label']
    print(os.path.join(img_path,img_name))
    img_data = nib.load(os.path.join(img_path,img_name))
    img = img_data.get_fdata()
    img = resize(img, (128,128,128), order=0)#将图像大小进行统一缩放,方便输入网络,分别为(h,w,c),可根据自己的数据集来更改

#     img = nib.load(os.path.join(img_path,img_name).get_fdata() #载入
    img = np.array(img)
    #nomalization
    if np.min(img) < np.max(img):
        img = img - np.min(img)
        img = img / np.max(img)
    if np.unique(label==1):
        label_data = 1
        net_data.append([img,label_data])
        np.save(os.path.join(save_path,pid), net_data) #保存
    if np.unique(label==0):
        label_data = 0
        net_data.append([img,label_data])
        np.save(os.path.join(save_path,pid), net_data) #保存
print('Done!')

二、加载数据

1.加载数据,Dataset.py:

import torch
# 定义GetLoader类,继承Dataset方法,并重写__getitem__()和__len__()方法
class GetLoader(torch.utils.data.Dataset):
	# 初始化函数,得到数据
    def __init__(self, data_root, data_label):
        self.data = data_root
        self.label = data_label
    # index是根据batchsize划分数据后得到的索引,最后将data和对应的labels进行一起返回
    def __getitem__(self, index):
        data = self.data[index]
        labels = self.label[index]
        return torch.tensor(data).float(), torch.tensor(labels).float()
    # 该函数返回数据大小长度,目的是DataLoader方便划分,如果不知道大小,DataLoader会一脸懵逼
    def __len__(self):
        return len(self.data)

1.一些其他函数,utils.py:

from skimage import transform,exposure
from sklearn import model_selection, preprocessing, metrics, feature_selection
import os
import numpy as np
import random
import torch

#加载npy数据和label
def load_npy_data(data_dir,split):
    datanp=[]                               #images
    truenp=[]                               #labels
    for file in os.listdir(data_dir):
        data=np.load(os.path.join(data_dir,file),allow_pickle=True)
#         data[0][0] = resize(data[0][0], (224,224,224))
        if(split =='train'):
            data_sug= transform.rotate(data[0][0], 60) #旋转60度,不改变大小
            data_sug2 = exposure.exposure.adjust_gamma(data[0][0], gamma=0.5)#变亮
            datanp.append(data_sug)
            truenp.append(data[0][1])
            datanp.append(data_sug2)
            truenp.append(data[0][1])
        datanp.append(data[0][0])
        truenp.append(data[0][1])
    datanp = np.array(datanp)
    #numpy.array可使用 shape。list不能使用shape。可以使用np.array(list A)进行转换。
    #不能随意加维度
    datanp=np.expand_dims(datanp,axis=4)  #加维度,from(1256,256,128)to(256,256,128,1),according the cnn tabel.png
    datanp = datanp.transpose(0,4,1,2,3)
    truenp = np.array(truenp)
    print(datanp.shape, truenp.shape)
    print(np.min(datanp), np.max(datanp), np.mean(datanp), np.median(datanp))
    return datanp,truenp
    
#定义随机种子    
def set_seed(seed):
    random.seed(seed)
    os.environ["PYTHONHASHSEED"] = str(seed)
    np.random.seed(seed)
    torch.manual_seed(seed)
    if torch.cuda.is_available():
        torch.cuda.manual_seed_all(seed)
        torch.backends.cudnn.deterministic = True


def _init_fn(worker_id):
    np.random.seed(int(12) + worker_id)

#计算分类的各项指标
def calculate(score, label, th):
    score = np.array(score)
    label = np.array(label)
    pred = np.zeros_like(label)
    pred[score >= th] = 1
    pred[score < th] = 0

    TP = len(pred[(pred > 0.5) & (label > 0.5)])
    FN = len(pred[(pred < 0.5) & (label > 0.5)])
    TN = len(pred[(pred < 0.5) & (label < 0.5)])
    FP = len(pred[(pred > 0.5) & (label < 0.5)])

    AUC = metrics.roc_auc_score(label, score)
    result = {'AUC': AUC, 'acc': (TP + TN) / (TP + TN + FP + FN), 'sen': (TP) / (TP + FN + 0.0001),
              'spe': (TN) / (TN + FP + 0.0001)}
    #     print('acc',(TP+TN),(TP+TN+FP+FN),'spe',(TN),(TN+FP),'sen',(TP),(TP+FN))
    return result

def mkdir(path):
    if not os.path.exists(path):
        os.makedirs(path)

二、建模 model.py

import torch.nn as nn
import torch.nn.functional as F


class LeNet(nn.Module):
    def __init__(self):
        super(LeNet, self).__init__()
        self.conv1 = nn.Conv3d(1, 16, kernel_size=3, stride=2, padding=1)
        self.pool1 = nn.MaxPool3d(2, 2)
        self.conv2 = nn.Conv3d(16, 32, kernel_size=3, stride=2, padding=1)
        self.pool2 = nn.MaxPool3d(2, 2)
        self.fc1 = nn.Linear(32*8*8*8, 120)
        self.fc2 = nn.Linear(120, 84)
        self.fc3 = nn.Linear(84,1)


    def forward(self, x):
        x = F.relu(self.conv1(x))    # input(1, 128, 128,128) output(16, 65, 65,65)
        x = self.pool1(x)            # output(16, 32, 32,32)
        x = F.relu(self.conv2(x))    # output(32, 16, 16)
        x = self.pool2(x)            # output(32, 8, 8)
        x = x.view(-1, 32*8*8*8)       # output(32*8*8*8)
        x = F.relu(self.fc1(x))      # output(120)
        x = F.relu(self.fc2(x))      # output(84)
        x = self.fc3(x)              # output(10)
        return x

二、训练 train.py

接下来就是训练了


from model import LeNet
from skimage import transform,exposure
from sklearn import model_selection, preprocessing, metrics, feature_selection
import os
import time
import numpy as np
import pandas as pd
import torch
from torch.utils import data as torch_data
from torch.nn import functional as torch_functional

from Dataset import GetLoader
from sklearn.model_selection import StratifiedKFold
from sklearn.metrics import roc_auc_score
from utils import mkdir,load_npy_data,calculate,_init_fn,set_seed
set_seed(12)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")


train_path = '/home/mist/cloud/T1_sag_npy/train'


model_path = 'cloud/model_save_t1_sag'
model_floder = 'model_t1_sag_10.26_lenet'  
save_path = os.path.join(model_path, model_floder)
mkdir(save_path)

datanp_train,truenp_train = load_npy_data(train_path,'1')

# 通过GetLoader将数据进行加载,返回Dataset对象,包含data和labels
train_data_retriever2 = GetLoader(datanp_train, truenp_train)


class Trainer:
    def __init__(
            self,
            model,
            device,
            optimizer,
            criterion
    ):
        self.model = model
        self.device = device
        self.optimizer = optimizer
        self.criterion = criterion

        self.best_valid_score = 0  # np.inf
        self.n_patience = 0
        self.lastmodel = None

    def fit(self, epochs, train_loader, valid_loader, modility, save_path, patience, fold):
        best_auc = 0
        for n_epoch in range(1, epochs + 1):
            self.info_message("EPOCH: {}", n_epoch)

            train_loss, train_auc, train_time, rst_train = self.train_epoch(train_loader)
            valid_loss, valid_auc, valid_time, rst_val = self.valid_epoch(valid_loader)

            self.info_message(
                "[Epoch Train: {}] loss: {:.4f}, auc: {:.4f},time: {:.2f} s ",
                n_epoch, train_loss, train_auc, train_time
            )

            self.info_message(
                "[Epoch Valid: {}] loss: {:.4f}, auc: {:.4f}, time: {:.2f} s",
                n_epoch, valid_loss, valid_auc, valid_time
            )

            #             if True:
            # if self.best_valid_score > valid_loss:

            if self.best_valid_score < valid_auc and n_epoch > 20:
                #             if self.best_valid_score > valid_loss:
                self.save_model(n_epoch, modility, save_path, valid_loss, valid_auc, fold)
                self.info_message(
                    "loss decrease from {:.4f} to {:.4f}. Saved model to '{}'",
                    self.best_valid_score, valid_auc, self.lastmodel
                )
                self.best_valid_score = valid_auc
                self.n_patience = 0
                final_rst_train = rst_train
                final_rst_val = rst_val
            else:
                self.n_patience += 1

            if self.n_patience >= patience:
                self.info_message("\nValid auc didn't improve last {} epochs.", patience)
                break

        all_rst = [final_rst_train, final_rst_val]
        rst = pd.concat(all_rst, axis=1)
        print(rst)

        print('fold ' + str(fold) + ' finished!')
        return rst

    def train_epoch(self, train_loader):

        self.model.train()

        t = time.time()
        sum_loss = 0
        y_all = []
        outputs_all = []

        for step, batch in enumerate(train_loader, 1):
            X = batch[0].to(self.device)
            targets = batch[1].to(self.device)
            self.optimizer.zero_grad()
            outputs = self.model(X).squeeze(1)

            loss = self.criterion(outputs, targets)
            loss.backward()

            sum_loss += loss.detach().item()
            y_all.extend(batch[1].tolist())
            outputs_all.extend(outputs.tolist())

            self.optimizer.step()

            message = 'Train Step {}/{}, train_loss: {:.4f}'
            self.info_message(message, step, len(train_loader), sum_loss / step, end="\r")

        y_all = [1 if x > 0.5 else 0 for x in y_all]
        auc = roc_auc_score(y_all, outputs_all)
        fpr_micro, tpr_micro, th = metrics.roc_curve(y_all, outputs_all)
        max_th = -1
        max_yd = -1
        for i in range(len(th)):
            yd = tpr_micro[i] - fpr_micro[i]
            if yd > max_yd:
                max_yd = yd
                max_th = th[i]

        rst_train = pd.DataFrame([calculate(outputs_all, y_all, max_th)])

        return sum_loss / len(train_loader), auc, int(time.time() - t), rst_train

    def valid_epoch(self, valid_loader):
        self.model.eval()
        t = time.time()
        sum_loss = 0
        y_all = []
        outputs_all = []

        for step, batch in enumerate(valid_loader, 1):
            with torch.no_grad():
                X = batch[0].to(self.device)
                targets = batch[1].to(self.device)

                outputs = self.model(X).squeeze(1)
                loss = self.criterion(outputs, targets)

                sum_loss += loss.detach().item()
                y_all.extend(batch[1].tolist())
                outputs_all.extend(outputs.tolist())

            message = 'Valid Step {}/{}, valid_loss: {:.4f}'
            self.info_message(message, step, len(valid_loader), sum_loss / step, end="\r")

        y_all = [1 if x > 0.5 else 0 for x in y_all]
        auc = roc_auc_score(y_all, outputs_all)
        fpr_micro, tpr_micro, th = metrics.roc_curve(y_all, outputs_all)
        max_th = -1
        max_yd = -1
        for i in range(len(th)):
            yd = tpr_micro[i] - fpr_micro[i]
            if yd > max_yd:
                max_yd = yd
                max_th = th[i]

        rst_val = pd.DataFrame([calculate(outputs_all, y_all, max_th)])

        return sum_loss / len(valid_loader), auc, int(time.time() - t), rst_val

    def save_model(self, n_epoch, modility, save_path, loss, auc, fold):

        os.makedirs(save_path, exist_ok=True)
        self.lastmodel = os.path.join(save_path, f"{modility}-fold{fold}.pth")

        #         self.lastmodel = f"{save_path}-e{n_epoch}-loss{loss:.3f}-auc{auc:.3f}.pth"
        torch.save(
            {
                "model_state_dict": self.model.state_dict(),
                "optimizer_state_dict": self.optimizer.state_dict(),
                "best_valid_score": self.best_valid_score,
                "n_epoch": n_epoch,
            },
            self.lastmodel,
        )

    @staticmethod
    def info_message(message, *args, end="\n"):
        print(message.format(*args), end=end)


def train_mri_type(mri_type):
#5折交叉验证,每一折保存一个模型
    skf = StratifiedKFold(n_splits=5, shuffle=True, random_state=0)
    rst_dfs = []

    for fold, (train_idx, val_idx) in enumerate(skf.split(datanp_train, truenp_train)):
        print(f'Training for fold {fold} ...')
        train_x, train_y, val_x, val_y = datanp_train[train_idx], truenp_train[train_idx], datanp_train[val_idx], \
                                         truenp_train[val_idx]

        train_data_retriever = GetLoader(train_x, train_y)
        valid_data_retriever = GetLoader(val_x, val_y)

        train_loader = torch_data.DataLoader(
            train_data_retriever,
            batch_size=4,
            shuffle=True,
            num_workers=8,
            pin_memory=False,
            worker_init_fn=_init_fn
        )

        valid_loader = torch_data.DataLoader(
            valid_data_retriever,
            batch_size=4,
            shuffle=False,
            num_workers=8,
            pin_memory=False,
            worker_init_fn=_init_fn
        )

        model = LeNet()
        model.to(device)

        optimizer = torch.optim.Adam(model.parameters(), lr=0.001)
        #         optimizer = torch.optim.SGD(model.parameters(), lr=0.001, momentum=0.9)
        criterion = torch_functional.binary_cross_entropy_with_logits
        #         criterion = nn.BCELoss()
        trainer = Trainer(
            model,
            device,
            optimizer,
            criterion
        )

        rst = trainer.fit(
            50,
            train_loader,
            valid_loader,
            f"{mri_type}",
            save_path,
            30,
            fold,
        )
        rst_dfs.append(rst)

    rst_dfs = pd.concat(rst_dfs)
    print(rst_dfs)
    rst_dfs = pd.DataFrame(rst_dfs)
    rst_dfs.to_csv(os.path.join(save_path, 'train_val_res_pf.csv'))#保存每一折的指标

    return trainer.lastmodel, rst_dfs


modelfiles = None
#开始训练
if not modelfiles:
    modelfiles, rst_dfs = train_mri_type('t1_sag')
    print(modelfiles)

二、预测 predict.py

用5折交叉验证保存的5个模型,分别进行预测,预测之后计算两种指标:1,对5个模型预测指标直接取平均,2,对5个模型预测的分数取平均,用平均分数计算最后的指标


from model import LeNet
from skimage import transform,exposure
from sklearn import model_selection, preprocessing, metrics, feature_selection
import os
import numpy as np
import pandas as pd
import torch
from torch.utils import data as torch_data
from sklearn.metrics import roc_auc_score
from utils import mkdir,load_npy_data,calculate,_init_fn,set_seed
from Dataset import GetLoader


test_path = '/home/mist/cloud/T1_sag_npy/test'
model_path = 'cloud/model_save_t1_sag'
model_floder = 'model_t1_sag_10.26_lenet'  # model_TSC3:reset the train and test as machine learning
save_path = os.path.join(model_path, model_floder)
mkdir(save_path)


datanp_test, truenp_test = load_npy_data(test_path,'1')
# 通过GetLoader将数据进行加载,返回Dataset对象,包含data和labels
test_data_retriever = GetLoader(datanp_test, truenp_test)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

def predict(modelfile, mri_type, split):
    print(modelfile)
    data_retriever = test_data_retriever
    data_loader = torch_data.DataLoader(
        data_retriever,
        batch_size=4,
        shuffle=False,
        num_workers=8,
    )

    model = LeNet()
    model.to(device)

    checkpoint = torch.load(modelfile)
    model.load_state_dict(checkpoint["model_state_dict"])
    model.eval()

    y_pred = []
    ids = []
    y_all = []

    for e, batch in enumerate(data_loader, 1):
        print(f"{e}/{len(data_loader)}", end="\r")
        with torch.no_grad():
            tmp_pred = torch.sigmoid(model(batch[0].to(device))).cpu().numpy().squeeze()
            #             tmp_pred = model(batch[0].to(device)).cpu().numpy().squeeze()
            targets = batch[1].to(device)
            if tmp_pred.size == 1:
                y_pred.append(tmp_pred)
            else:
                y_pred.extend(tmp_pred.tolist())

            y_all.extend(batch[1].tolist())

    y_all = [1 if x > 0.5 else 0 for x in y_all]
    auc = roc_auc_score(y_all, y_pred)
    fpr_micro, tpr_micro, th = metrics.roc_curve(y_all, y_pred)
    max_th = -1
    max_yd = -1
    for i in range(len(th)):
        yd = tpr_micro[i] - fpr_micro[i]
        if yd > max_yd:
            max_yd = yd
            max_th = th[i]

    rst_val = pd.DataFrame([calculate(y_pred, y_all, max_th)])
    preddf = pd.DataFrame({"label": y_all, "y_pred": y_pred})
    return preddf, rst_val#返回每一个病人的预测分数的表格和预测指标AUC,ACC,Sep,sen


save_path = os.path.join(model_path,model_floder)

#加载保存的5个模型
modelfiles = []
for model_name in os.listdir(save_path):
    if model_name.endswith('.pth'):
        model_path_final = os.path.join(save_path,model_name)
        modelfiles.append(model_path_final)

#1,用5个模型对测试集数据进行预测,并取平均值
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
rst_test_all = []
scores = []
df_test = {}
for m in modelfiles:
    mtype = m.split('/')[-1].split('-')[1].split('.')[0]
    preddf,rst_test = predict(m,'T2', 'test')
    rst_test_all.append(rst_test)
    df_test[mtype] = preddf["y_pred"]
rst_test_all = pd.concat(rst_test_all)
rst_test_all = pd.DataFrame(rst_test_all)
df_test['label'] = preddf["label"]
df_test = pd.DataFrame(df_test)
rst_test_all.loc['mean'] = rst_test_all.mean(axis = 0)
rst_test_all.to_csv(os.path.join(save_path, 'test_res_pf.csv'))
print('测试集5折5个模型预测,取平均指标:',rst_test_all)


#2,对5折预测的分数取平均值,并计算指标
df_test = pd.DataFrame(df_test)
df_test["Average"] = 0
# for mtype in mri_types:
for i in range(0,5):
    df_test["Average"] += df_test.iloc[:,i]
df_test["Average"] /= 5
df_test.to_csv(os.path.join(save_path, 'test_score.csv'))
auc = roc_auc_score(df_test["label"], df_test["Average"])
print(f"test ensemble AUC: {auc:.4f}")
fpr_micro, tpr_micro, th = metrics.roc_curve(df_test["label"], df_test["Average"])
max_th = -1
max_yd = -1
for i in range(len(th)):
    yd = tpr_micro[i]-fpr_micro[i]
    if yd > max_yd:
        max_yd = yd
        max_th = th[i]
print(max_th)
rst_test = pd.DataFrame([calculate( df_test["Average"],df_test["label"], max_th)])
rst_test.to_csv(os.path.join(save_path, 'test_ensembel_res.csv'))
print('5折分数取平均之后的测试集指标:',rst_test)
print('5折预测的分数,以及分数平均值表格:',df_test)

总结

本文从数据预处理开始,用最简单的3D的CNN实现五折交叉验证的MRI图像二分类

你可能感兴趣的:(图像处理,深度学习,pytorch,3d,cnn,MRI分类,交叉验证)