- 英伟达消费级RTX显卡配置表
真相很简单
识别算法网络rtxnvidia英伟达游戏显卡
显卡型号显存大小显存频率显存位宽显存带宽CUDA核心数TDP(功耗)上市年份RTX409024GB21Gbps384-bit1,008GB/s16,384450W2022RTX4080(16GB)16GB22.4Gbps256-bit716.8GB/s9,728320W2022RTX4080(12GB)12GB21Gbps192-bit504GB/s7,680285W2023RTX4070Ti12
- 知识蒸馏:让大模型“瘦身“而不失智慧的魔术
一休哥助手
人工智能人工智能
引言:当AI模型需要"减肥"在人工智能领域,一个有趣的悖论正在上演:大模型的参数规模每年以10倍速度增长,而移动设备的算力却始终受限。GPT-4的1750亿参数需要价值500万美元的GPU集群运行,但现实中的智能设备可能只有指甲盖大小。这种矛盾催生了一项神奇的技术——知识蒸馏(KnowledgeDistillation),它就像给AI模型进行"脑外科手术",将庞然大物的智慧浓缩到轻量模型中。第一章
- 3090显卡Ktransformer本地部署deepseek R1:70B
SIATdog
ai
这里写自定义目录标题效果完成视频:配置参考依赖安装安装cuda配置环境下载deepseekR170B下载ktransoformer开始安装运行Web启动常见问题runtimeerrordon'tmatch更新cudaERROR:Failedtobuildinstallablewheelsforsomepyproject.tomlbasedprojects(ktransformers)效果完成视频:
- 在网页跑3D多人互动之渲染效能瓶颈
微网兔子
後端技術前端网络服务器c++unity架构3d
累积到目前测试回馈给我们的心得,主要问题还是在前端显示的部分。所以就来聊聊在网页跑3D多人互动之渲染效能瓶颈!!!数万个3D角色与场景物件需即时渲染,导致GPU/CPU过载,低端设备卡顿。已经使用的解决方案:LOD(LevelofDetail)技术:根据距离动态调整模型细节,远距离使用低多边形模型。InstancedRendering:批次渲染相同模型(如重复的树木、建筑物)。Culling(剔除
- 密码策略合规性检查仪表盘
闲人编程
python网络服务器异常报警实时监控多因素认证合规性密码策略
目录一、前言二、密码策略合规性背景与意义2.1密码策略的重要性2.2密码策略合规性检查的需求三、系统设计思路与架构3.1数据采集与加解密模块3.2异步任务调度与GPU加速模块3.3密码策略检查算法模块3.4GUI界面模块四、核心数学公式与算法证明4.1AES-GCM加解密公式4.2密码强度评分算法4.3合规性检测算法4.4统计与报告生成五、异步任务调度与GPU加速设计六、GUI界面设计与功能模块七
- CPO光电共封装关键技术与Top玩家代表作
CoderIsArt
光学CPO
CPO(Co-PackagedOptics,光电共封装)关键技术介绍CPO(Co-PackagedOptics)是一种将光学器件与电子芯片(如ASIC、CPU、GPU等)封装在同一基板上的技术。它旨在解决传统可插拔光模块在高密度、高带宽场景下的功耗、散热和信号完整性问题。CPO通过缩短电信号的传输距离,减少信号衰减和功耗,同时提高系统的整体性能和能效。CPO技术主要应用于数据中心、高性能计算(HP
- Marker可以快速且准确地将PDF转换为markdown格式。
星霜笔记
开源关注简介免费源码pdf
MarkerMarker可以快速且准确地将PDF转换为markdown格式。支持多种文档类型(针对书籍和科学论文进行了优化)支持所有语言移除页眉/页脚/其他杂质格式化表格和代码块提取并保存图像以及markdown将大多数方程转换为latex支持在GPU、CPU或MPS上运行工作原理Marker是一个由深度学习模型组成的管道:提取文本,必要时进行OCR处理(启发式算法,surya,tesseract
- Open-Sora - 为所有人实现高效的视频制作大众化
小众AI
AI开源音视频人工智能AI编程
GitHub:https://github.com/hpcaitech/Open-Sora更多AI开源软件:发现分享好用的AI工具、AI开源软件、AI模型、AI变现-小众AI这是一款开源的SOTA(State-of-the-Art)视频生成模型,仅用20万美元(224张GPU)就能训练出商业级11B参数的视频生成大模型。它采用Python语言和PyTorch深度学习框架开发,具有生成速度快、资源消
- 无矩阵乘法LLM:效率与性能双突破
XianxinMao
人工智能矩阵人工智能线性代数
标题:无矩阵乘法LLM:效率与性能双突破文章信息摘要:无矩阵乘法的LLMs通过创新技术替代传统矩阵乘法操作,显著降低了计算成本,减少了对GPU的依赖。这种模型在内存使用和延迟方面表现优异,尤其在大规模模型上效率显著提升。例如,13B参数的模型仅需4.19GBGPU内存,延迟低至695.48ms,远优于传统模型。此外,基于FPGA的硬件优化进一步提升了性能,1.3B参数模型功耗仅为13W,达到人类阅
- 高性能计算:GPU加速与分布式训练
AI天才研究院
DeepSeekR1&大数据AI人工智能大模型AI大模型企业级应用开发实战计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
1.背景介绍随着人工智能技术的飞速发展,深度学习模型的规模和复杂度不断提升,对计算能力的需求也越来越高。传统的CPU架构已经难以满足深度学习模型训练的需求,因此,GPU加速和分布式训练成为了高性能计算领域的研究热点。1.1.深度学习与计算挑战深度学习模型通常包含数百万甚至数十亿个参数,训练过程需要进行大量的矩阵运算和梯度更新,对计算资源的需求非常高。传统的CPU架构虽然具有较强的通用性,但其并行计
- 【ai】mocap:conda 安装python3.8+ cuda+ pytorch+torchaudio、torchvision
等风来不如迎风去
AI入门与实战人工智能ubuntuconda
MotionCapubuntu18.04不知道为啥会依赖于ffmpeg、xorg渲染?安装pytorch就是会带上cudacudnn啥的pytorch【ai】tx2nx:安装torch、torchvisionforyolov5这里就发现pytorch和torchvision有依赖关系的,还涉及到rapidjson所以python的环境隔离很重要。核心库-cudatoolkit=11.3-pytor
- 查看 CUDA cudnn 版本 查看Navicat GPU版本
FergusJ
备份python开发语言
查看显卡型号:lspci|grepVGA(lspci是linux查看硬件信息的命令),屏幕会打印出主机的集显几独显信息python中查看显卡型号fromtensorflow.python.clientimportdevice_libdevice_lib.list_local_devices()
- 查看 Linux 系统中安装的 CUDA 版本
烟锁池塘柳0
LinuxCUDAlinuxubuntu
查看Linux系统中安装的CUDA版本的常见方法:文章目录1查看/usr/local/cuda目录2使用nvcc命令3检查libcublas版本注意:nvidia-smi1查看/usr/local/cuda目录通常,CUDA被安装在/usr/local/cuda目录下,所以可以使用ls命令来查看这个目录是否存在,以及查看其中的内容。ls/usr/local/cuda如果这个目录存在,通常它会是一个
- OpenBayes 教程上新丨单卡A6000轻松部署Gemma 3,精准识别黄仁勋演讲实拍
3月12日晚间,谷歌发布了「单卡大魔王」Gemma3,号称是能在单个GPU或TPU上运行的最强模型,真实战绩也证实了官方blog所言非虚——其27B版本击败671B的满血DeepSeekV3,以及o3-mini、Llama-405B,仅次于DeepSeekR1,但在算力需求方面却远低于其他模型。如下图所示:*按照ChatbotArenaElo分数对模型进行排名;圆点表示预估的算力需求随后,谷歌也是
- 一切皆是映射:DQN训练加速技术:分布式训练与GPU并行
AI天才研究院
计算AI大模型企业级应用开发实战ChatGPT计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
1.背景介绍1.1深度强化学习的兴起近年来,深度强化学习(DeepReinforcementLearning,DRL)在游戏、机器人控制、自然语言处理等领域取得了令人瞩目的成就。作为一种结合深度学习和强化学习的强大技术,DRL能够使智能体在与环境交互的过程中学习最优策略,从而实现自主决策和控制。1.2DQN算法及其局限性深度Q网络(DeepQ-Network,DQN)是DRL的一种经典算法,它利用
- 已解决:python多线程使用TensorRT输出为零?附tensorrt推理代码
李卓璐
算法实战python开发语言
我是多个不同类型的模型多线程调用报错。设备:cuda12.1,cudnn8.9.2,tensorrt8.6.11.问题tensorrt的推理没输出???有输入:想要的输出:原因:多进程时,每进程应单独调用importpycuda.driverascuda和cuda.init(),完成初始化CUDA驱动,并需要使用self.cfx.push()和self.cfx.pop()管理CUDA上下文,以保证
- CUDA编程基础
清 澜
算法面试人工智能c++算法nvidiacuda编程
一、快速理解CUDA编程1.1CUDA简介CUDA(ComputeUnifiedDeviceArchitecture)是由NVIDIA推出的并行计算平台和应用程序接口模型。它允许开发者利用NVIDIAGPU的强大计算能力来加速通用计算任务,而不仅仅是图形渲染。通过CUDA,开发者可以编写C、C++或Fortran代码,并将其扩展以在GPU上运行,从而显著提高性能,特别是在处理大规模数据集和复杂算法
- 2025年开发者工具全景图:IDE与AI协同的效能革命
He.Tech
ide人工智能
2025年开发者工具全景图:IDE与AI协同的效能革命(基于CSDN、腾讯云等平台技术文档与行业趋势分析)一、核心工具链的务实演进与配置指南主流开发工具的升级聚焦于工程化适配与智能化增强,以下是2025年开发者必须掌握的配置技巧:1.VSCode:性能优化与远程协作标杆核心特性:CUDA核心利用率分析:通过NVIDIANsight插件优化GPU计算任务,需在settings.json中添加:"ns
- 人形机器人报告:新一代GPU、具身智能与AI应用
小报告达人
机器人人工智能
今天分享的是人形机器人系列深度研究报告:《人形机器人专题:新一代GPU、具身智能与AI应用》。(报告出品方:中泰证券)核心观点GTC2024召开在即,关注新一代GPU、具身智能、AI应用三大方向。GTC2024将于当地时间3月18-21日在美国加州圣何塞会议中心及线上举行,预计发布加速计算、生成式AI以及机器人领域突破性成果。建议关注三大方向:1)B100及后续芯片路线。B100预计采用Black
- bitsandbytes 报错
HuggingMe
pytorch
把bitsandbytes更新到最新版本。用nvidia-smi查看CUDA版本,我的是12.2。在~/.bashrc中添加了以下几行:exportPATH="/usr/local/cuda-12.2/bin:$PATH"exportBNB_CUDA_VERSION=122exportLD_LIBRARY_PATH="/usr/local/cuda-12.2/lib64:$LD_LIBRARY_P
- centos7输入python -m bitsandbytes报错CUDA Setup failed despite GPU being available. Please run the follo
小太阳,乐向上
python开发语言
在centos7.9系统中安装gpu驱动及cuda,跑大模型会报错,提示让输入python-mbitsandbytes依然报错:CUDASETUP:Loadingbinary/usr/local/python3/lib/python3.9/site-packages/bitsandbytes/libbitsandbytes_cuda117.so.../lib64/libstdc++.so.6:ve
- 关于bitsandbytes安装报错
跃跃欲试88
语言模型人工智能transformer
RunTimeError:CUDASetupfaileddespiteGPUbeingavailable.InspecttheCUDASETUPoutputsabovetofixyourenvironment!ubuntu@VM-0-8-ubuntu:~$python-mbitsandbytesFalse===================================BUGREPORT===
- python -m bitsandbytes 报错解释与解决
MityKif
python开发语言
RuntimeError:CUDASetupfaileddespiteGPUbeingavailable.Pleaserunthefollowingcommandtogetmoreinformation:python-mbitsandbytesInspecttheoutputofthecommandandseeifyoucanlocateCUDAlibraries.Youmightneedtoad
- c++高性能多进程 cuda编程: safe_softmax实现 + cub::BlockReduce自定义归约操作
FakeOccupational
深度学习c++开发语言
目录cub::BlockReduce自定义归约操作(`cub::BlockReduce::Reduce`)1.语法safe_softmax实现cub::BlockReducecub::BlockReduce是CUB库(CUDAUnBound)提供的一种用于GPU线程块内数据归约(一般完成所有数据规约需要两次规约)的高效工具。它允许线程块内的多个线程并行地对数据执行归约操作,cub::BlockRe
- AXI总线之相关应用
逾越TAO
fpga开发硬件工程笔记
AXI总线作为现代SoC设计的核心互连协议,其应用场景极为广泛,覆盖移动设备、AI加速器、FPGA、存储控制器等多个领域。以下是AXI在不同应用中的关键角色及具体实现案例:一、移动处理器与SoC应用场景:智能手机、平板电脑的SoC(如高通骁龙、苹果A系列、华为麒麟)中,AXI用于连接多核CPU、GPU、ISP(图像信号处理器)、DDR控制器等模块。典型案例:ARMCortex-A系列多核集群:AX
- Deepseek的本地化部署软件工具包
哈拉少12
人工智能
选择模型版本参数规模硬件要求(最低)适用场景1.5B/7B8GB内存,无专用GPU文本处理、简单问答14B16GB内存+12GB显存代码生成、逻辑推理32B/70B24GB显存+32GB内存企业级复杂任务执行命令:ollamarundeepseek-r1:14b(以14B为例)。配置环境变量新增用户变量:OLLAMA_HOST=0.0.0.0OLLAMA_ORIGINS=*重启Ollama服务使配
- 芯片:CPU和GPU有什么区别?
InnoLink_1024
AGI人工智能人工智能aiagigpu算力
CPU(中央处理器)和GPU(图形处理单元)是计算机系统中两种非常重要的处理器,它们各自有不同的设计理念、架构特点以及应用领域。下面是它们之间的一些主要差异:1.设计目的与应用领域CPU:设计目的是为了处理广泛的计算任务,包括操作系统管理、应用程序运行和基本的输入输出处理等。它处理的是复杂的、通用的计算任务,通常包括控制逻辑、内存管理等。GPU:设计目的是为了处理图形和并行计算任务。最初是为图形渲
- 使用LoRA微调LLaMA3
想胖的壮壮
深度学习人工智能
使用LoRA微调LLaMA3的案例案例概述在这个案例中,我们将使用LoRA微调LLaMA3模型,进行一个文本分类任务。我们将使用HuggingFace的Transformers库来完成这个过程。步骤一:环境搭建安装必要的Python包pipinstalltransformersdatasetstorch配置GPU环境确保你的环境中配置了CUDA和cuDNN,并验证GPU是否可用。importtor
- nvidia_uvm 被占用,nvidia-smi 卡死
guganly
数据中心运维实战chrome前端服务器运维linux
系统可以识别到多块NVIDIAGPU,且驱动模块已加载,但nvidia_uvm被占用,nvidia-smi卡死,通常是由于以下原因导致:可能原因GPU资源被占用某些进程正在使用NVIDIA驱动,导致模块无法卸载。驱动损坏或加载异常NVIDIA内核模块部分加载,但驱动未能正确工作。GPU挖矿或AI任务未释放某些后台程序未正常退出,导致GPU资源无法被释放。PCIe通道异常多卡环境可能由于PCIe配置
- 用户行为路径分析(Google Analytics数据挖掘)
闲人编程
Python数据分析实战精要数据挖掘人工智能用户行为路径分析Analytics数据分析用户习惯
目录用户行为路径分析(GoogleAnalytics数据挖掘)1.引言2.项目背景与意义2.1用户行为路径的重要性2.2GoogleAnalytics数据概述2.3数据规模与挑战3.数据集生成与介绍4.数据预处理与GPU加速5.用户行为路径分析方法5.1用户行为路径构建5.2行为路径挖掘与模式分析5.3常用指标计算6.数据可视化与指标展示7.PyQtGUI设计与实现8.GPU加速与性能优化9.系统
- Hadoop(一)
朱辉辉33
hadooplinux
今天在诺基亚第一天开始培训大数据,因为之前没接触过Linux,所以这次一起学了,任务量还是蛮大的。
首先下载安装了Xshell软件,然后公司给了账号密码连接上了河南郑州那边的服务器,接下来开始按照给的资料学习,全英文的,头也不讲解,说锻炼我们的学习能力,然后就开始跌跌撞撞的自学。这里写部分已经运行成功的代码吧.
在hdfs下,运行hadoop fs -mkdir /u
- maven An error occurred while filtering resources
blackproof
maven报错
转:http://stackoverflow.com/questions/18145774/eclipse-an-error-occurred-while-filtering-resources
maven报错:
maven An error occurred while filtering resources
Maven -> Update Proje
- jdk常用故障排查命令
daysinsun
jvm
linux下常见定位命令:
1、jps 输出Java进程
-q 只输出进程ID的名称,省略主类的名称;
-m 输出进程启动时传递给main函数的参数;
&nb
- java 位移运算与乘法运算
周凡杨
java位移运算乘法
对于 JAVA 编程中,适当的采用位移运算,会减少代码的运行时间,提高项目的运行效率。这个可以从一道面试题说起:
问题:
用最有效率的方法算出2 乘以8 等於几?”
答案:2 << 3
由此就引发了我的思考,为什么位移运算会比乘法运算更快呢?其实简单的想想,计算机的内存是用由 0 和 1 组成的二
- java中的枚举(enmu)
g21121
java
从jdk1.5开始,java增加了enum(枚举)这个类型,但是大家在平时运用中还是比较少用到枚举的,而且很多人和我一样对枚举一知半解,下面就跟大家一起学习下enmu枚举。先看一个最简单的枚举类型,一个返回类型的枚举:
public enum ResultType {
/**
* 成功
*/
SUCCESS,
/**
* 失败
*/
FAIL,
- MQ初级学习
510888780
activemq
1.下载ActiveMQ
去官方网站下载:http://activemq.apache.org/
2.运行ActiveMQ
解压缩apache-activemq-5.9.0-bin.zip到C盘,然后双击apache-activemq-5.9.0-\bin\activemq-admin.bat运行ActiveMQ程序。
启动ActiveMQ以后,登陆:http://localhos
- Spring_Transactional_Propagation
布衣凌宇
springtransactional
//事务传播属性
@Transactional(propagation=Propagation.REQUIRED)//如果有事务,那么加入事务,没有的话新创建一个
@Transactional(propagation=Propagation.NOT_SUPPORTED)//这个方法不开启事务
@Transactional(propagation=Propagation.REQUIREDS_N
- 我的spring学习笔记12-idref与ref的区别
aijuans
spring
idref用来将容器内其他bean的id传给<constructor-arg>/<property>元素,同时提供错误验证功能。例如:
<bean id ="theTargetBean" class="..." />
<bean id ="theClientBean" class=&quo
- Jqplot之折线图
antlove
jsjqueryWebtimeseriesjqplot
timeseriesChart.html
<script type="text/javascript" src="jslib/jquery.min.js"></script>
<script type="text/javascript" src="jslib/excanvas.min.js&
- JDBC中事务处理应用
百合不是茶
javaJDBC编程事务控制语句
解释事务的概念; 事务控制是sql语句中的核心之一;事务控制的作用就是保证数据的正常执行与异常之后可以恢复
事务常用命令:
Commit提交
- [转]ConcurrentHashMap Collections.synchronizedMap和Hashtable讨论
bijian1013
java多线程线程安全HashMap
在Java类库中出现的第一个关联的集合类是Hashtable,它是JDK1.0的一部分。 Hashtable提供了一种易于使用的、线程安全的、关联的map功能,这当然也是方便的。然而,线程安全性是凭代价换来的――Hashtable的所有方法都是同步的。此时,无竞争的同步会导致可观的性能代价。Hashtable的后继者HashMap是作为JDK1.2中的集合框架的一部分出现的,它通过提供一个不同步的
- ng-if与ng-show、ng-hide指令的区别和注意事项
bijian1013
JavaScriptAngularJS
angularJS中的ng-show、ng-hide、ng-if指令都可以用来控制dom元素的显示或隐藏。ng-show和ng-hide根据所给表达式的值来显示或隐藏HTML元素。当赋值给ng-show指令的值为false时元素会被隐藏,值为true时元素会显示。ng-hide功能类似,使用方式相反。元素的显示或
- 【持久化框架MyBatis3七】MyBatis3定义typeHandler
bit1129
TypeHandler
什么是typeHandler?
typeHandler用于将某个类型的数据映射到表的某一列上,以完成MyBatis列跟某个属性的映射
内置typeHandler
MyBatis内置了很多typeHandler,这写typeHandler通过org.apache.ibatis.type.TypeHandlerRegistry进行注册,比如对于日期型数据的typeHandler,
- 上传下载文件rz,sz命令
bitcarter
linux命令rz
刚开始使用rz上传和sz下载命令:
因为我们是通过secureCRT终端工具进行使用的所以会有上传下载这样的需求:
我遇到的问题:
sz下载A文件10M左右,没有问题
但是将这个文件A再传到另一天服务器上时就出现传不上去,甚至出现乱码,死掉现象,具体问题
解决方法:
上传命令改为;rz -ybe
下载命令改为:sz -be filename
如果还是有问题:
那就是文
- 通过ngx-lua来统计nginx上的虚拟主机性能数据
ronin47
ngx-lua 统计 解禁ip
介绍
以前我们为nginx做统计,都是通过对日志的分析来完成.比较麻烦,现在基于ngx_lua插件,开发了实时统计站点状态的脚本,解放生产力.项目主页: https://github.com/skyeydemon/ngx-lua-stats 功能
支持分不同虚拟主机统计, 同一个虚拟主机下可以分不同的location统计.
可以统计与query-times request-time
- java-68-把数组排成最小的数。一个正整数数组,将它们连接起来排成一个数,输出能排出的所有数字中最小的。例如输入数组{32, 321},则输出32132
bylijinnan
java
import java.util.Arrays;
import java.util.Comparator;
public class MinNumFromIntArray {
/**
* Q68输入一个正整数数组,将它们连接起来排成一个数,输出能排出的所有数字中最小的一个。
* 例如输入数组{32, 321},则输出这两个能排成的最小数字32132。请给出解决问题
- Oracle基本操作
ccii
Oracle SQL总结Oracle SQL语法Oracle基本操作Oracle SQL
一、表操作
1. 常用数据类型
NUMBER(p,s):可变长度的数字。p表示整数加小数的最大位数,s为最大小数位数。支持最大精度为38位
NVARCHAR2(size):变长字符串,最大长度为4000字节(以字符数为单位)
VARCHAR2(size):变长字符串,最大长度为4000字节(以字节数为单位)
CHAR(size):定长字符串,最大长度为2000字节,最小为1字节,默认
- [强人工智能]实现强人工智能的路线图
comsci
人工智能
1:创建一个用于记录拓扑网络连接的矩阵数据表
2:自动构造或者人工复制一个包含10万个连接(1000*1000)的流程图
3:将这个流程图导入到矩阵数据表中
4:在矩阵的每个有意义的节点中嵌入一段简单的
- 给Tomcat,Apache配置gzip压缩(HTTP压缩)功能
cwqcwqmax9
apache
背景:
HTTP 压缩可以大大提高浏览网站的速度,它的原理是,在客户端请求网页后,从服务器端将网页文件压缩,再下载到客户端,由客户端的浏览器负责解压缩并浏览。相对于普通的浏览过程HTML ,CSS,Javascript , Text ,它可以节省40%左右的流量。更为重要的是,它可以对动态生成的,包括CGI、PHP , JSP , ASP , Servlet,SHTML等输出的网页也能进行压缩,
- SpringMVC and Struts2
dashuaifu
struts2springMVC
SpringMVC VS Struts2
1:
spring3开发效率高于struts
2:
spring3 mvc可以认为已经100%零配置
3:
struts2是类级别的拦截, 一个类对应一个request上下文,
springmvc是方法级别的拦截,一个方法对应一个request上下文,而方法同时又跟一个url对应
所以说从架构本身上 spring3 mvc就容易实现r
- windows常用命令行命令
dcj3sjt126com
windowscmdcommand
在windows系统中,点击开始-运行,可以直接输入命令行,快速打开一些原本需要多次点击图标才能打开的界面,如常用的输入cmd打开dos命令行,输入taskmgr打开任务管理器。此处列出了网上搜集到的一些常用命令。winver 检查windows版本 wmimgmt.msc 打开windows管理体系结构(wmi) wupdmgr windows更新程序 wscrip
- 再看知名应用背后的第三方开源项目
dcj3sjt126com
ios
知名应用程序的设计和技术一直都是开发者需要学习的,同样这些应用所使用的开源框架也是不可忽视的一部分。此前《
iOS第三方开源库的吐槽和备忘》中作者ibireme列举了国内多款知名应用所使用的开源框架,并对其中一些框架进行了分析,同样国外开发者
@iOSCowboy也在博客中给我们列出了国外多款知名应用使用的开源框架。另外txx's blog中详细介绍了
Facebook Paper使用的第三
- Objective-c单例模式的正确写法
jsntghf
单例iosiPhone
一般情况下,可能我们写的单例模式是这样的:
#import <Foundation/Foundation.h>
@interface Downloader : NSObject
+ (instancetype)sharedDownloader;
@end
#import "Downloader.h"
@implementation
- jquery easyui datagrid 加载成功,选中某一行
hae
jqueryeasyuidatagrid数据加载
1.首先你需要设置datagrid的onLoadSuccess
$(
'#dg'
).datagrid({onLoadSuccess :
function
(data){
$(
'#dg'
).datagrid(
'selectRow'
,3);
}});
2.onL
- jQuery用户数字打分评价效果
ini
JavaScripthtmljqueryWebcss
效果体验:http://hovertree.com/texiao/jquery/5.htmHTML文件代码:
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<title>jQuery用户数字打分评分代码 - HoverTree</
- mybatis的paramType
kerryg
DAOsql
MyBatis传多个参数:
1、采用#{0},#{1}获得参数:
Dao层函数方法:
public User selectUser(String name,String area);
对应的Mapper.xml
<select id="selectUser" result
- centos 7安装mysql5.5
MrLee23
centos
首先centos7 已经不支持mysql,因为收费了你懂得,所以内部集成了mariadb,而安装mysql的话会和mariadb的文件冲突,所以需要先卸载掉mariadb,以下为卸载mariadb,安装mysql的步骤。
#列出所有被安装的rpm package rpm -qa | grep mariadb
#卸载
rpm -e mariadb-libs-5.
- 利用thrift来实现消息群发
qifeifei
thrift
Thrift项目一般用来做内部项目接偶用的,还有能跨不同语言的功能,非常方便,一般前端系统和后台server线上都是3个节点,然后前端通过获取client来访问后台server,那么如果是多太server,就是有一个负载均衡的方法,然后最后访问其中一个节点。那么换个思路,能不能发送给所有节点的server呢,如果能就
- 实现一个sizeof获取Java对象大小
teasp
javaHotSpot内存对象大小sizeof
由于Java的设计者不想让程序员管理和了解内存的使用,我们想要知道一个对象在内存中的大小变得比较困难了。本文提供了可以获取对象的大小的方法,但是由于各个虚拟机在内存使用上可能存在不同,因此该方法不能在各虚拟机上都适用,而是仅在hotspot 32位虚拟机上,或者其它内存管理方式与hotspot 32位虚拟机相同的虚拟机上 适用。
- SVN错误及处理
xiangqian0505
SVN提交文件时服务器强行关闭
在SVN服务控制台打开资源库“SVN无法读取current” ---摘自网络 写道 SVN无法读取current修复方法 Can't read file : End of file found
文件:repository/db/txn_current、repository/db/current
其中current记录当前最新版本号,txn_current记录版本库中版本