手把手开始ROS仿真小车(一)仿真环境及小车搭建

最近打算自己完成一个无人驾驶汽车仿真运行的项目,因此记录一下过程,希望能帮助到需要搭建ROS仿真环境的人,主要参考了冰达机器人的课程,在B站上也有相关视频可以学习

实现过程

1.创建工作区
2.gazebo 绘制地图,并保存为 .world 文件
3.urdf 小车模型和 xacro 小车模型
4.ros 运行地图和小车模型
5.查看传感器数据

一、创建工作区

mkdir -p ~/catkin_ws/src/tutorials  // 创建文件夹
cd ~/catkin_ws/src/tutorials
mkdir launch  // 存放 launch 文件
mkdir urdf  // 存放小车模型文件
mkdir world  // 存放地图文件

一个简单的工作区就创建好了,后续再一步步往里面添加文件

二、gazebo绘制地图

1.打开gazebo

sudo gazebo  // 打开gazebo,后续保存文件可能需要管理员权限

手把手开始ROS仿真小车(一)仿真环境及小车搭建_第1张图片
2.进入编辑界面
手把手开始ROS仿真小车(一)仿真环境及小车搭建_第2张图片
手把手开始ROS仿真小车(一)仿真环境及小车搭建_第3张图片
3.点击 wall 后可绘制墙壁
手把手开始ROS仿真小车(一)仿真环境及小车搭建_第4张图片
4.点击 Add Texture 可修改墙壁纹理
手把手开始ROS仿真小车(一)仿真环境及小车搭建_第5张图片
5.点击 filesave as 保存模型文件
手把手开始ROS仿真小车(一)仿真环境及小车搭建_第6张图片
6.选择保存名称和保存位置
手把手开始ROS仿真小车(一)仿真环境及小车搭建_第7张图片
7.点击模型,通过 pose 修改模型位置
手把手开始ROS仿真小车(一)仿真环境及小车搭建_第8张图片
8.通过 insert 可添加其他模型
手把手开始ROS仿真小车(一)仿真环境及小车搭建_第9张图片
9.地图绘制好后,保存为 .world 地图文件(文件后缀名一定要是 .world)
手把手开始ROS仿真小车(一)仿真环境及小车搭建_第10张图片
10.将 .world 文件复制到 ~/catkin_ws/src/world 文件夹内,地图环境就搭建好了

三、小车模型

小车模型通常有两种,一种是 urdf,一种是 sacro,两种都有差不多,定义也是有固定模板,因此这里直接放两种模型的代码
1.urdf 小车模型文件1:myrot.urdf,具体内容如下:

<?xml version="1.0"?>  
<robot name="mybot">  

  <link name="base_footprint"/> 

  <joint name="base_joint" type="fixed">  
    <parent link="base_footprint"/>  
    <child link="base_link"/>  
    <origin rpy="0 0 0" xyz="0 0 0"/>  
  </joint>  
  
  <link name="base_link">  
    <inertial>
     <origin xyz="0 0 0" rpy="0 0 0"/>
     <mass value="0.1"/>
     <inertia ixx="0.0001"  ixy="0"  ixz="0" iyy="0.0001" iyz="0" izz="0.001" />
    </inertial>

    <visual>  
      <geometry>  
        <box size="0.25 0.16 0.05"/>  
      </geometry>  
      <origin rpy="0 0 0" xyz="0 0 0"/>  
      <material name="blue">  
          <color rgba="0 0 0.8 1"/>  
      </material>  
    </visual>  

   <collision>
     <origin xyz="0 0 0" rpy="0 0 0"/>
     <geometry>
       <box size="0.25 0.16 0.05"/>
     </geometry>
   </collision>

  </link>  
 
  <link name="right_wheel_link">  
    <inertial>
     <origin xyz="0 0 0" rpy="0 0 0"/>
     <mass value="0.1"/>
     <inertia ixx="0.0001"  ixy="0"  ixz="0" iyy="0.0001" iyz="0" izz="0.0001" />
    </inertial>

    <visual>  
      <geometry>  
        <cylinder length="0.02" radius="0.025"/>  
      </geometry>  
      <material name="black">  
        <color rgba="0 0 0 1"/>  
      </material>  
    </visual>  

    <collision>
     <origin xyz="0 0 0" rpy="0 0 0"/>
     <geometry>
       <cylinder length="0.02" radius="0.025"/> 
     </geometry>
    </collision>
  </link>  
 
  <joint name="right_wheel_joint" type="continuous">  
    <axis xyz="0 0 -1"/>  
    <parent link="base_link"/>  
    <child link="right_wheel_link"/>  
    <origin rpy="1.5707 0 0" xyz=" 0.1 -0.09 -0.03"/>  
  </joint>  
 
  <link name="left_wheel_link">  
    <inertial>
     <origin xyz="0 0 0" rpy="0 0 0"/>
     <mass value="0.1"/>
     <inertia ixx="0.0001"  ixy="0"  ixz="0" iyy="0.0001" iyz="0" izz="0.0001" />
    </inertial>

    <visual>  
      <geometry>  
        <cylinder length="0.02" radius="0.025"/>  
      </geometry>  
      <material name="black">  
        <color rgba="0 0 0 1"/>  
      </material>  
    </visual>  

    <collision>
     <origin xyz="0 0 0" rpy="0 0 0"/>
     <geometry>
       <cylinder length="0.02" radius="0.025"/> 
     </geometry>
    </collision>   
  </link>  
 
  <joint name="left_wheel_joint" type="continuous">  
    <axis xyz="0 0 -1"/>  
    <parent link="base_link"/>  
    <child link="left_wheel_link"/>  
    <origin rpy="1.5707 0 0" xyz="0.1 0.09 -0.03"/>  
  </joint>  
 
  <link name="ball_wheel_link">  
    <inertial>
     <origin xyz="0 0 0" rpy="0 0 0"/>
     <mass value="0.1"/>
     <inertia ixx="0"  ixy="0"  ixz="0" iyy="0" iyz="0" izz="0" />
    </inertial>

    <visual>  
      <geometry>  
        <sphere radius="0.025"/>  
      </geometry>  
      <material name="black">  
        <color rgba="0 0 0 1"/>  
      </material>  
    </visual>  

    <collision>
     <origin xyz="0 0 0" rpy="0 0 0"/>
     <geometry>
       <sphere radius="0.025"/> 
     </geometry>
    </collision>   
  </link>  

  <joint name="ball_wheel_joint" type="fixed">  
    <axis xyz="0 0 1"/>  
    <parent link="base_link"/>  
    <child link="ball_wheel_link"/>  
    <origin rpy="0 0 0" xyz="-0.10 0 -0.03"/>  
  </joint>  

</robot>

上述小车模型文件没有传感器配置!
2.xacro小车模型文件分为两部分,分别为 myrot.xacromyrot.gazebo.xacro ,具体内容如下:
myrot.xacro:

<?xml version="1.0"?>  
<robot name="mybot" xmlns:xacro="http://ros.org/wiki/xacro">  

  <xacro:include filename="$(find tutorials)/urdf/mybot.gazebo.xacro" /> 

  <link name="base_footprint"/>

  <joint name="base_joint" type="fixed">  
    <parent link="base_footprint"/>  
    <child link="base_link"/>  
    <origin rpy="0 0 0" xyz="0 0 0"/>  
  </joint>  
  
  <link name="base_link">  
    <inertial>
     <origin xyz="0 0 0" rpy="0 0 0"/>
     <mass value="0.1"/>
     <inertia ixx="0.0001"  ixy="0"  ixz="0" iyy="0.0001" iyz="0" izz="0.001" />
    </inertial>

    <visual>  
      <geometry>  
        <box size="0.25 0.16 0.05"/>  
      </geometry>  
      <origin rpy="0 0 0" xyz="0 0 0"/>  
      <material name="blue">  
          <color rgba="0 0 0.8 1"/>  
      </material>  
    </visual>  

   <collision>
     <origin xyz="0 0 0" rpy="0 0 0"/>
     <geometry>
       <box size="0.25 0.16 0.05"/>
     </geometry>
   </collision>

  </link>  
 
  <link name="right_wheel_link">  
    <inertial>
     <origin xyz="0 0 0" rpy="0 0 0"/>
     <mass value="0.1"/>
     <inertia ixx="0.0001"  ixy="0"  ixz="0" iyy="0.0001" iyz="0" izz="0.0001" />
    </inertial>

    <visual>  
      <geometry>  
        <cylinder length="0.02" radius="0.025"/>  
      </geometry>  
      <material name="black">  
        <color rgba="0 0 0 1"/>  
      </material>  
    </visual>  

    <collision>
     <origin xyz="0 0 0" rpy="0 0 0"/>
     <geometry>
       <cylinder length="0.02" radius="0.025"/> 
     </geometry>
    </collision>
  </link>  
 
  <joint name="right_wheel_joint" type="continuous">  
    <axis xyz="0 0 -1"/>  
    <parent link="base_link"/>  
    <child link="right_wheel_link"/>  
    <origin rpy="1.5707 0 0" xyz=" 0.1 -0.09 -0.03"/>  
  </joint>  
 
  <link name="left_wheel_link">  
    <inertial>
     <origin xyz="0 0 0" rpy="0 0 0"/>
     <mass value="0.1"/>
     <inertia ixx="0.0001"  ixy="0"  ixz="0" iyy="0.0001" iyz="0" izz="0.0001" />
    </inertial>

    <visual>  
      <geometry>  
        <cylinder length="0.02" radius="0.025"/>  
      </geometry>  
      <material name="black">  
        <color rgba="0 0 0 1"/>  
      </material>  
    </visual>  

    <collision>
     <origin xyz="0 0 0" rpy="0 0 0"/>
     <geometry>
       <cylinder length="0.02" radius="0.025"/> 
     </geometry>
    </collision>   
  </link>  
 
  <joint name="left_wheel_joint" type="continuous">  
    <axis xyz="0 0 -1"/>  
    <parent link="base_link"/>  
    <child link="left_wheel_link"/>  
    <origin rpy="1.5707 0 0" xyz="0.1 0.09 -0.03"/>  
  </joint>  
 
  <link name="ball_wheel_link">  
    <inertial>
     <origin xyz="0 0 0" rpy="0 0 0"/>
     <mass value="0.1"/>
     <inertia ixx="0"  ixy="0"  ixz="0" iyy="0" iyz="0" izz="0" />
    </inertial>

    <visual>  
      <geometry>  
        <sphere radius="0.025"/>  
      </geometry>  
      <material name="black">  
        <color rgba="0 0 0 1"/>  
      </material>  
    </visual>  

    <collision>
     <origin xyz="0 0 0" rpy="0 0 0"/>
     <geometry>
       <sphere radius="0.025"/> 
     </geometry>
    </collision>   
  </link>  

  <joint name="ball_wheel_joint" type="fixed">  
    <axis xyz="0 0 1"/>  
    <parent link="base_link"/>  
    <child link="ball_wheel_link"/>  
    <origin rpy="0 0 0" xyz="-0.10 0 -0.03"/>  
  </joint>  
  <!-- imu sensor -->
  <link name="imu">  
    <visual>  
      <geometry>  
        <box size="0.01 0.01 0.01"/>  
      </geometry>  
      <material name="white">  
          <color rgba="1 1 1 1"/>  
      </material>  
    </visual>  
  </link>  

  <joint name="imu_joint" type="fixed">  
    <parent link="base_link"/>  
    <child link="imu"/>  
    <origin xyz="0.08 0 0.025"/>  
  </joint> 

  <!-- camera -->
  <link name="base_camera_link">  
    <visual>  
      <geometry>  
        <box size="0.02 0.03 0.03"/>  
      </geometry>  
      <material name="white">  
          <color rgba="1 1 1 1"/>  
      </material>  
    </visual>  
  </link>  

  <joint name="camera_joint" type="fixed">  
    <parent link="base_link"/>  
    <child link="base_camera_link"/>  
    <origin xyz="0.1 0 0.025"/>  
  </joint> 
  <!-- laser lidar -->
  <link name="base_laser_link">  
    <visual>  
      <geometry>  
        <cylinder length="0.06" radius="0.04"/>   
      </geometry>  
      <material name="white">  
          <color rgba="1 1 1 1"/>  
      </material>  
    </visual>  
  </link>  
  
  <joint name="laser_joint" type="fixed">  
    <parent link="base_link"/>  
    <child link="base_laser_link"/>  
    <origin xyz="0 0.0 0.06"/>  
  </joint> 

</robot>

myrot.gazebo.xacro:

<?xml version="1.0"?>
<robot name="mybot" xmlns:xacro="http://ros.org/wiki/xacro">
  <xacro:arg name="laser_visual" default="false"/>
  <xacro:arg name="camera_visual" default="false"/>
  <xacro:arg name="imu_visual"   default="false"/>

  <gazebo reference="base_link">
    <material>Gazebo/DarkGrey</material>
  </gazebo>

  <gazebo reference="left_wheel_link">
    <mu1>0.5</mu1>
    <mu2>0.5</mu2>
    <kp>500000.0</kp>
    <kd>10.0</kd>
    <minDepth>0.001</minDepth>
    <maxVel>1.0</maxVel>
    <fdir1>1 0 0</fdir1>
    <material>Gazebo/DarkGrey</material>
  </gazebo>

  <gazebo reference="right_wheel_link">
    <mu1>0.5</mu1>
    <mu2>0.5</mu2>
    <kp>500000.0</kp>
    <kd>10.0</kd>
    <minDepth>0.001</minDepth>
    <maxVel>1.0</maxVel>
    <fdir1>1 0 0</fdir1>
    <material>Gazebo/FlatBlack</material>
  </gazebo>

  <gazebo reference="ball_wheel_link">
    <mu1>0.1</mu1>
    <mu2>0.1</mu2>
    <kp>500000.0</kp>
    <kd>100.0</kd>
    <minDepth>0.001</minDepth>
    <maxVel>1.0</maxVel>
    <material>Gazebo/FlatBlack</material>
  </gazebo>

  <gazebo reference="imu">
    <sensor type="imu" name="imu">
      <always_on>true</always_on>
      <visualize>$(arg imu_visual)</visualize>
    </sensor>
    <material>Gazebo/FlatBlack</material>
  </gazebo>

  <gazebo>
    <plugin name="mybot_controller" filename="libgazebo_ros_diff_drive.so">
      <commandTopic>cmd_vel</commandTopic>
      <odometryTopic>odom</odometryTopic>
      <odometryFrame>odom</odometryFrame>
      <odometrySource>world</odometrySource>
      <publishOdomTF>true</publishOdomTF>
      <robotBaseFrame>base_footprint</robotBaseFrame>
      <publishWheelTF>false</publishWheelTF>
      <publishTf>true</publishTf>
      <publishWheelJointState>true</publishWheelJointState>
      <legacyMode>false</legacyMode>
      <updateRate>30</updateRate>
      <leftJoint>left_wheel_joint</leftJoint>
      <rightJoint>right_wheel_joint</rightJoint>
      <wheelSeparation>0.180</wheelSeparation>
      <wheelDiameter>0.05</wheelDiameter>
      <wheelAcceleration>10</wheelAcceleration>
      <wheelTorque>100</wheelTorque>
      <rosDebugLevel>na</rosDebugLevel>
    </plugin>
  </gazebo>

  <gazebo>
    <plugin name="imu_plugin" filename="libgazebo_ros_imu.so">
      <alwaysOn>true</alwaysOn>
      <bodyName>imu</bodyName>  
      <frameName>imu</frameName>
      <topicName>imu</topicName>
      <serviceName>imu_service</serviceName>
      <gaussianNoise>0.0</gaussianNoise>
      <updateRate>0</updateRate>
      <imu>
        <noise>
          <type>gaussian</type>
          <rate>
            <mean>0.0</mean>
            <stddev>2e-4</stddev>
            <bias_mean>0.0000075</bias_mean>
            <bias_stddev>0.0000008</bias_stddev>
          </rate>
          <accel>
            <mean>0.0</mean>
            <stddev>1.7e-2</stddev>
            <bias_mean>0.1</bias_mean>
            <bias_stddev>0.001</bias_stddev>
          </accel>
        </noise>
      </imu>
    </plugin>
  </gazebo>

  <gazebo reference="base_laser_link">
    <material>Gazebo/FlatBlack</material>
    <sensor type="ray" name="rplidar_sensor">
      <pose>0 0 0 0 0 0</pose>
      <visualize>$(arg laser_visual)</visualize>
      <update_rate>7</update_rate>
      <ray>
        <scan>
          <horizontal>
            <samples>720</samples>
            <resolution>0.5</resolution>
            <min_angle>0.0</min_angle>
            <max_angle>6.28319</max_angle>
          </horizontal>
        </scan>
        <range>
          <min>0.120</min>
          <max>12.0</max>
          <resolution>0.015</resolution>
        </range>
        <noise>
          <type>gaussian</type>
          <mean>0.0</mean>
          <stddev>0.01</stddev>
        </noise>
      </ray>
      <plugin name="gazebo_ros_rplidar_controller" filename="libgazebo_ros_laser.so">
        <topicName>scan</topicName>
        <frameName>base_laser_link</frameName>
      </plugin>
    </sensor>
  </gazebo>

  <gazebo reference="base_camera_link">
    <sensor type="camera" name="csi Camera">
      <always_on>true</always_on>
      <visualize>$(arg camera_visual)</visualize>
      <camera>
          <horizontal_fov>1.085595</horizontal_fov>
          <image>
              <width>640</width>
              <height>480</height>
              <format>R8G8B8</format>
          </image>
          <clip>
              <near>0.03</near>
              <far>100</far>
          </clip>
      </camera>
      <plugin name="camera_controller" filename="libgazebo_ros_camera.so">
        <alwaysOn>true</alwaysOn>
        <updateRate>30.0</updateRate>
        <cameraName>/</cameraName>
        <frameName>base_camera_link</frameName>
        <imageTopicName>image_raw</imageTopicName>
        <cameraInfoTopicName>camera_info</cameraInfoTopicName>
        <hackBaseline>0.07</hackBaseline>
        <distortionK1>0.0</distortionK1>
        <distortionK2>0.0</distortionK2>
        <distortionK3>0.0</distortionK3>
        <distortionT1>0.0</distortionT1>
        <distortionT2>0.0</distortionT2>
      </plugin>
    </sensor>
  </gazebo>

</robot>

3.将小车模型文件 myrot.xacromyrot.gazebo.xacro 放到 ~/catkin_ws/src/tutorials/urdf/ 文件夹下

四、ROS 运行环境和小车模型

1.编写 .launch 文件,放到 ~/catkin/src/tutorials/launch 文件夹
gazebo_world.launch:

<launch>
  <include file="$(find gazebo_ros)/launch/empty_world.launch">
    <arg name="world_name" value="$(find tutorials)/world/room.world"/>  // 注意这里是你的地图文件名
    <arg name="paused" value="false"/>
    <arg name="use_sim_time" value="true"/>
    <arg name="gui" value="true"/>
    <arg name="headless" value="false"/>
    <arg name="debug" value="false"/>
  </include>
</launch>

simulation_robot.launch:

<launch>
  <arg name="x_pos" default="0.0"/>
  <arg name="y_pos" default="0.0"/>
  <arg name="z_pos" default="0.0"/>
  <param name="/use_sim_time" value="true" />  
  
  <include file="$(find tutorials)/launch/gazebo_world.launch"/>

  <param name="robot_description" command="$(find xacro)/xacro --inorder $(find tutorials)/urdf/mybot.xacro" />

  <node pkg="gazebo_ros" type="spawn_model" name="spawn_urdf" args="-urdf -model mybot.xacro -x $(arg x_pos) -y $(arg y_pos) -z $(arg z_pos) -param robot_description" />

  <node name="robot_state_publisher" pkg="robot_state_publisher" type="robot_state_publisher" />

</launch>

2.编写 CMakeLists.txtpackage.xml 文件
CMakeLists.txt:

cmake_minimum_required(VERSION 2.8.3)
project(tutorials)

find_package(catkin REQUIRED COMPONENTS)

package.xml:

<?xml version="1.0"?>
<package format="2">
  <name>tutorials</name>
  <version>0.0.0</version>
  <description>The tutorials package</description>

  <maintainer email="[email protected]">nanorobot</maintainer>

  <license>TODO</license>
</package>

3.编写好后,放在 ~/catkin_ws/src/tutorials 文件夹下
4.在 ~/catkin_ws 文件夹下 catkin 编译

catkin build

5.不要忘了 source 一下,否则会报错

source devel/setup.bash

6.运行 launch 文件

roslaunch tutorials simulation_robot.launch 

7.运行结果如图:
手把手开始ROS仿真小车(一)仿真环境及小车搭建_第11张图片
手把手开始ROS仿真小车(一)仿真环境及小车搭建_第12张图片
到这里你的仿真环境和小车都已经搭建完成啦!

五、查看传感器数据

1.首先可以在终端通过 rostopic list 查看 ros 节点数据,我的结果如下

/camera_info
/clock
/cmd_vel
/gazebo/link_states
/gazebo/model_states
/gazebo/parameter_descriptions
/gazebo/parameter_updates
/gazebo/set_link_state
/gazebo/set_model_state
/image_raw  // 图像传感器数据节点
/image_raw/compressed
/image_raw/compressed/parameter_descriptions
/image_raw/compressed/parameter_updates
/image_raw/compressedDepth
/image_raw/compressedDepth/parameter_descriptions
/image_raw/compressedDepth/parameter_updates
/image_raw/theora
/image_raw/theora/parameter_descriptions
/image_raw/theora/parameter_updates
/imu
/joint_states
/odom
/parameter_descriptions
/parameter_updates
/rosout
/rosout_agg
/scan  // 激光传感器数据节点
/tf
/tf_static

2.然后通过 rviz 可视化查看数据,终端输入 rviz 进入如下界面:
手把手开始ROS仿真小车(一)仿真环境及小车搭建_第13张图片
3.修改 frameodom,点击 Add,添加 TFRobotModelLaserScanImage
手把手开始ROS仿真小车(一)仿真环境及小车搭建_第14张图片
手把手开始ROS仿真小车(一)仿真环境及小车搭建_第15张图片
4.添加后如图所示:
手把手开始ROS仿真小车(一)仿真环境及小车搭建_第16张图片
5.修改 LaserScanImageTopic 为 ros 节点的输出,分别为 /Scan/Image_raw,显示结果如图:
手把手开始ROS仿真小车(一)仿真环境及小车搭建_第17张图片
至此完成了基于 gazebo 的环境和小车仿真

再次推荐大家去B站观看视频学习,本博客内容大部分参考冰达机器人的B站视频,视频链接如下:

你可能感兴趣的:(ubuntu,linux)