原文
① Efficientnet_b8已经推出
python
>>import timm
>>model=timm.create_model('tf_efficientnet_b8',pretrained=False)
>>model
[Aggregated Residual Transformations for Deep Neural Networks]
[ResNext官方代码链接]
[EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks]
[EfficientNet官方代码链接]
[代码链接—pytorch-image-models]
Python库—timm
安装timm包
pip install timm
测试
python
>>import timm
>>model=timm.create_model('resnet18',pretrained=False)
>>model
以下表格中是目前timm所支持的模型结构,可运行model=timm.create_model('模型名称')
加载模型。
分类网络系列 |
---|
ig_resnext101_32x48d |
tf_efficientnet_b8 |
tf_efficientnet_b8_ap |
tf_efficientnet_b7_ap |
ig_resnext101_32x32d |
tf_efficientnet_b7 |
tf_efficientnet_b6_ap |
swsl_resnext101_32x8d |
tf_efficientnet_b5_ap |
ig_resnext101_32x16d |
tf_efficientnet_b6 |
tf_efficientnet_b5 |
swsl_resnext101_32x16d |
tf_efficientnet_b4_ap |
swsl_resnext101_32x4d |
tf_efficientnet_b4 |
pnasnet5large |
ig_resnext101_32x8d |
nasnetalarge |
swsl_resnext50_32x4d |
efficientnet_b3a |
ssl_resnext101_32x16d |
tf_efficientnet_b3_ap |
tf_efficientnet_b3 |
ssl_resnext101_32x8d |
efficientnet_b3 |
senet154 |
gluon_senet154 |
swsl_resnet50 |
gluon_resnet152_v1s |
ssl_resnext101_32x4d |
gluon_seresnext101_32x4d |
gluon_seresnext101_64x4d |
efficientnet_b2a |
gluon_resnext101_64x4d |
mixnet_xl |
gluon_resnet152_v1d |
inception_resnet_v2 |
tf_efficientnet_el |
gluon_resnet101_v1d |
efficientnet_b2 |
gluon_resnext101_32x4d |
ssl_resnext50_32x4d |
gluon_resnet101_v1s |
tf_efficientnet_b2_ap |
seresnext101_32x4d |
inception_v4 |
dpn107 |
tf_efficientnet_b2 |
dpn92 |
ens_adv_inception_resnet_v2 |
gluon_seresnext50_32x4d |
gluon_resnet152_v1c |
dpn131 |
gluon_resnet152_v1b |
resnext50d_32x4d |
dpn98 |
gluon_xception65 |
gluon_resnet101_v1c |
hrnet_w64 |
dla102x2 |
gluon_resnext50_32x4d |
resnext101_32x8d |
tf_efficientnet_cc_b1_8e |
gluon_resnet101_v1b |
hrnet_w48 |
tf_efficientnet_b1_ap |
ssl_resnet50 |
res2net50_26w_8s |
res2net101_26w_4s |
seresnext50_32x4d |
gluon_resnet50_v1d |
xception |
resnet50 |
mixnet_l |
hrnet_w40 |
hrnet_w44 |
wide_resnet101_2 |
tf_efficientnet_b1 |
tf_mixnet_l |
gluon_resnet50_v1s |
tf_efficientnet_em |
efficientnet_b1 |
dla169 |
seresnet152 |
res2net50_26w_6s |
resnext50_32x4d |
dla102x |
wide_resnet50_2 |
dla60_res2net |
hrnet_w32 |
dla60_res2next |
selecsls60b |
seresnet101 |
resnet152 |
dla60x |
res2next50 |
hrnet_w30 |
res2net50_14w_8s |
dla102 |
gluon_resnet50_v1c |
seresnext26t_32x4d |
seresnext26tn_32x4d |
selecsls60 |
res2net50_26w_4s |
tf_efficientnet_cc_b0_8e |
efficientnet_b0 |
seresnet50 |
tv_resnext50_32x4d |
seresnext26d_32x4d |
gluon_resnet50_v1b |
res2net50_48w_2s |
dpn68b |
resnet101 |
densenet161 |
tf_efficientnet_cc_b0_4e |
densenet201 |
mixnet_m |
tf_efficientnet_es |
selecsls42b |
seresnext26_32x4d |
tf_efficientnet_b0_ap |
dla60 |
tf_mixnet_m |
tf_efficientnet_b0 |
hrnet_w18 |
resnet26d |
dpn68 |
tv_resnet50 |
mixnet_s |
densenet169 |
tf_mixnet_s |
mobilenetv3_rw |
tf_mobilenetv3_large_100 |
semnasnet_100 |
resnet26 |
fbnetc_100 |
hrnet_w18_small_v2 |
resnet34 |
seresnet34 |
densenet121 |
mnasnet_100 |
dla34 |
gluon_resnet34_v1b |
spnasnet_100 |
tf_mobilenetv3_large_075 |
tv_resnet34 |
swsl_resnet18 |
ssl_resnet18 |
hrnet_w18_small |
tf_mobilenetv3_large_minimal_100 |
seresnet18 |
gluon_resnet18_v1b |
resnet18 |
tf_mobilenetv3_small_100 |
dla60x_c |
dla46x_c |
tf_mobilenetv3_small_075 |
dla46_c |
tf_mobilenetv3_small_minimal_100 |
tf_mixnet_l |
以下表格是timm官方公布的测试结果,我截取前30名在此展示,想要查看完整榜单请访问[results-imagenet.csv]。
model | top1 | top1_err | top5 | top5_err | param_count | img_size | cropt_pct | interpolation |
---|---|---|---|---|---|---|---|---|
ig_resnext101_32x48d | 85.428 | 14.572 | 97.572 | 2.428 | 828.41 | 224 | 0.875 | bilinear |
tf_efficientnet_b8 | 85.37 | 14.63 | 97.39 | 2.61 | 87.41 | 672 | 0.954 | bicubic |
tf_efficientnet_b8_ap | 85.37 | 14.63 | 97.294 | 2.706 | 87.41 | 672 | 0.954 | bicubic |
tf_efficientnet_b7_ap | 85.12 | 14.88 | 97.252 | 2.748 | 66.35 | 600 | 0.949 | bicubic |
ig_resnext101_32x32d | 85.094 | 14.906 | 97.438 | 2.562 | 468.53 | 224 | 0.875 | bilinear |
tf_efficientnet_b7 | 84.936 | 15.064 | 97.204 | 2.796 | 66.35 | 600 | 0.949 | bicubic |
tf_efficientnet_b6_ap | 84.788 | 15.212 | 97.138 | 2.862 | 43.04 | 528 | 0.942 | bicubic |
swsl_resnext101_32x8d | 84.284 | 15.716 | 97.176 | 2.824 | 88.79 | 224 | 0.875 | bilinear |
tf_efficientnet_b5_ap | 84.252 | 15.748 | 96.974 | 3.026 | 30.39 | 456 | 0.934 | bicubic |
ig_resnext101_32x16d | 84.17 | 15.83 | 97.196 | 2.804 | 194.03 | 224 | 0.875 | bilinear |
tf_efficientnet_b6 | 84.11 | 15.89 | 96.886 | 3.114 | 43.04 | 528 | 0.942 | bicubic |
tf_efficientnet_b5 | 83.812 | 16.188 | 96.748 | 3.252 | 30.39 | 456 | 0.934 | bicubic |
swsl_resnext101_32x16d | 83.346 | 16.654 | 96.846 | 3.154 | 194.03 | 224 | 0.875 | bilinear |
tf_efficientnet_b4_ap | 83.248 | 16.752 | 96.392 | 3.608 | 19.34 | 380 | 0.922 | bicubic |
swsl_resnext101_32x4d | 83.23 | 16.77 | 96.76 | 3.24 | 44.18 | 224 | 0.875 | bilinear |
tf_efficientnet_b4 | 83.022 | 16.978 | 96.3 | 3.7 | 19.34 | 380 | 0.922 | bicubic |
pnasnet5large | 82.736 | 17.264 | 96.046 | 3.954 | 86.06 | 331 | 0.875 | bicubic |
ig_resnext101_32x8d | 82.688 | 17.312 | 96.636 | 3.364 | 88.79 | 224 | 0.875 | bilinear |
nasnetalarge | 82.554 | 17.446 | 96.038 | 3.962 | 88.75 | 331 | 0.875 | bicubic |
swsl_resnext50_32x4d | 82.182 | 17.818 | 96.23 | 3.77 | 25.03 | 224 | 0.875 | bilinear |
efficientnet_b3a | 81.866 | 18.134 | 95.836 | 4.164 | 12.23 | 320 | 1 | bicubic |
ssl_resnext101_32x16d | 81.844 | 18.156 | 96.096 | 3.904 | 194.03 | 224 | 0.875 | bilinear |
tf_efficientnet_b3_ap | 81.822 | 18.178 | 95.624 | 4.376 | 12.23 | 300 | 0.904 | bicubic |
tf_efficientnet_b3 | 81.636 | 18.364 | 95.718 | 4.282 | 12.23 | 300 | 0.904 | bicubic |
ssl_resnext101_32x8d | 81.616 | 18.384 | 96.038 | 3.962 | 88.79 | 224 | 0.875 | bilinear |
efficientnet_b3 | 81.494 | 18.506 | 95.716 | 4.284 | 12.23 | 300 | 0.904 | bicubic |
senet154 | 81.31 | 18.69 | 95.496 | 4.504 | 115.09 | 224 | 0.875 | bilinear |
gluon_senet154 | 81.234 | 18.766 | 95.348 | 4.652 | 115.09 | 224 | 0.875 | bicubic |
swsl_resnet50 | 81.166 | 18.834 | 95.972 | 4.028 | 25.56 | 224 | 0.875 | bilinear |
[“华为云杯”图像分类大赛]