pytorch 猫狗识别

数据集分割

import shutil
import numpy as np
import os
# kaggle原始数据集地址
original_dataset_dir = 'D:\\data1\\data'
total_num = int(len(os.listdir(original_dataset_dir))/2)   # total_num=12500
# os.listdir() 可以查看当前目录下的文件和目录个数
random_idx = np.array(range(total_num))
np.random.shuffle(random_idx)   # np.random.shuffle()  对第一维的随机打乱
base_dir = 'D:\\data1\\target_data'   # 待处理的数据集地址
if not os.path.exists(base_dir):
    os.mkdir(base_dir)               # 创建目录

# 训练集、测试集的划分
sub_dirs = ['train', 'test']
animals = ['cats', 'dogs']
train_idx = random_idx[:int(total_num * 0.8):]    # train_idx=10000
test_idx = random_idx[int(total_num * 0.8)::]  # test_idx=2500
numbers = [train_idx, test_idx]
for idx, sub_dir in enumerate(sub_dirs):
    dir = os.path.join(base_dir, sub_dir)   # os.path.join()函数连接两个或更多的路径名组件
    if not os.path.exists(dir):
        os.mkdir(dir)
    for animal in animals:
        animal_dir = os.path.join(dir, animal)
        if not os.path.exists(animal_dir):
            os.mkdir(animal_dir)
        fnames = [animal[:-1] + '.{}.jpg'.format(i) for i in numbers[idx]]
        for fname in fnames:
            src = os.path.join(original_dataset_dir, fname)
            dst = os.path.join(animal_dir, fname)
            shutil.copyfile(src, dst)   # src复制到dst中去

        # 验证训练集、验证集、测试集的划分的照片数目
        print(animal_dir + ' total images : %d' % (len(os.listdir(animal_dir))))

模型的训练


import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from matplotlib import pyplot as plt
from torchvision import datasets, transforms

# 设置超参数
BATCH_SIZE = 50
EPOCHS = 2
DEVICE = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

# 数据预处理
transform = transforms.Compose([
    transforms.RandomResizedCrop(224),
    transforms.ToTensor(),
    transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])
])

# 读取数据
root = 'D:\\dog VS cat\\target_data'
dataset_train = datasets.ImageFolder(root + '\\train', transform)
dataset_test = datasets.ImageFolder(root + '\\test', transform)

# 导入数据
train_loader = torch.utils.data.DataLoader(dataset_train, batch_size=BATCH_SIZE, shuffle=True)
test_loader = torch.utils.data.DataLoader(dataset_test, batch_size=BATCH_SIZE, shuffle=True)


# 定义网络
class ConvNet(nn.Module):
    def __init__(self):
        super(ConvNet, self).__init__()
        self.conv1 = nn.Conv2d(3, 32, 3)
        self.max_pool1 = nn.MaxPool2d(2)
        self.conv2 = nn.Conv2d(32, 64, 3)
        self.max_pool2 = nn.MaxPool2d(2)
        self.conv3 = nn.Conv2d(64, 128, 3)
        self.max_pool3 = nn.MaxPool2d(2)
        self.conv4 = nn.Conv2d(128, 128, 3)
        self.max_pool4 = nn.MaxPool2d(2)
        self.fc1 = nn.Linear(7*7*128, 512)
        self.fc2 = nn.Linear(512, 1)

    def forward(self, x):
        in_size = x.size(0)
        x = self.conv1(x)
        x = F.relu(x)
        x = self.max_pool1(x)
        x = self.conv2(x)
        x = F.relu(x)
        x = self.max_pool2(x)
        x = self.conv3(x)
        x = F.relu(x)
        x = self.max_pool3(x)
        x = self.conv4(x)
        x = F.relu(x)
        x = self.max_pool4(x)
        # 展开
        x = x.view(-1, 7*7*128)
        x = self.fc1(x)
        x = F.relu(x)
        x = self.fc2(x)
        x = torch.sigmoid(x)
        return x



# 实例化模型并且移动到GPU
model = ConvNet().to(DEVICE)
# 选择简单暴力的Adam优化器,学习率调低
optimizer = optim.Adam(model.parameters(), lr=1e-4)


# 定义训练过程
def train(model, device, train_loader, optimizer, epoch):
    model.train()
    correct = 0
    for batch_idx, (data, target) in enumerate(train_loader):
        # 增加一个维度而不是reshape,否则要是提取的不是50的倍数就会报错(例如最后一个batch)
        data, target = data.to(device), target.to(device).float().unsqueeze(-1)
        optimizer.zero_grad()
        output = model(data)
        pred = torch.tensor([[1] if num[0] >= 0.5 else [0] for num in output]).to(device)
        correct += pred.eq(target.long()).sum().item()
        # print(output)
        loss = F.binary_cross_entropy(output, target)
        loss.backward()
        optimizer.step()

        if (batch_idx + 1) % 10 == 0:
            loss.item()
            print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f} '.format(
                epoch, (batch_idx + 1) * len(data), len(train_loader.dataset),
                   100. * (batch_idx + 1) / len(train_loader), loss.item()))
    print('\ntrain set: Accuracy: {}/{} ({:.0f}%)\n'.format(
        correct, len(train_loader.dataset),
        100. * correct / len(train_loader.dataset)))



# 定义测试过程
def test(model, device, test_loader):
    model.eval()
    test_loss = 0
    correct = 0
    with torch.no_grad():
        for data, target in test_loader:
            data, target = data.to(device), target.to(device).float().unsqueeze(-1)
            output = model(data)
            # print(output)
            test_loss += F.binary_cross_entropy(output, target, reduction='sum').item()  # 将一批的损失相加
            pred = torch.tensor([[1] if num[0] >= 0.5 else [0] for num in output]).to(device)
            correct += pred.eq(target.long()).sum().item()
        print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format(
            test_loss, correct, len(test_loader.dataset),
            100. * correct / len(test_loader.dataset)))


# 训练
for epoch in range(1, EPOCHS + 1):
    train(model, DEVICE, train_loader, optimizer, epoch)
    test(model, DEVICE, test_loader)

预测

import matplotlib.pyplot as plt
import torch.nn as nn
import torch.nn.functional as F
import torch.utils.data
from PIL import Image
from torchvision import transforms


class ConvNet(nn.Module):
    def __init__(self,classes=2):
        super(ConvNet, self).__init__()
        self.conv1 = nn.Conv2d(3, 32, 3)
        self.max_pool1 = nn.MaxPool2d(2)
        self.conv2 = nn.Conv2d(32, 64, 3)
        self.max_pool2 = nn.MaxPool2d(2)
        self.conv3 = nn.Conv2d(64, 128, 3)
        self.max_pool3 = nn.MaxPool2d(2)
        self.conv4 = nn.Conv2d(128, 128, 3)
        self.max_pool4 = nn.MaxPool2d(2)
        self.fc1 = nn.Linear(128*7*7, 512)
        self.fc2 = nn.Linear(512, 1)

    def forward(self, x):
        in_size = x.size(0)
        x = self.conv1(x)
        x = F.relu(x)
        x = self.max_pool1(x)
        x = self.conv2(x)
        x = F.relu(x)
        x = self.max_pool2(x)
        x = self.conv3(x)
        x = F.relu(x)
        x = self.max_pool3(x)
        x = self.conv4(x)
        x = F.relu(x)
        x = self.max_pool4(x)
        # 展开
        # x = x.view(in_size, -1)
        x = x.view(-1, 128*7*7)
        x = self.fc1(x)
        x = F.relu(x)
        x = self.fc2(x)
        x = torch.sigmoid(x)
        return x


model = ConvNet()
model.load_state_dict(torch.load('7.pth'))
model.eval()

path = 'C://Users//Administrator//Pictures//dog2.jpg'
input_image = Image.open(path)
plt.imshow(input_image)
plt.axis('off')
plt.show()

input_image = transforms.ToTensor()(input_image)
input_image = transforms.RandomResizedCrop(150)(input_image)
input_image = transforms.Normalize(mean=[0.5, 0.5, 0.5],
                                   std=[0.5, 0.5, 0.5])(input_image)
input_image = torch.unsqueeze(input_image, 0)
output = model(input_image)
print(output)
target = torch.Tensor([0.5])
if output <= target:
    print("识别结果是猫")
else:
    print("识别结果是狗")

你可能感兴趣的:(深度学习,深度学习)