lenet 学习 pytorch 代码

  • 1 enet 网络结构 (随手复制 )

lenet 学习 pytorch 代码_第1张图片

  • 2 实现代码
import torch
import torch.nn as nn  # All neural network modules, nn.Linear, nn.Conv2d, BatchNorm, Loss functions


class LeNet(nn.Module):
    def __init__(self):
        super(LeNet, self).__init__()
        self.relu = nn.ReLU()
        self.pool = nn.AvgPool2d(kernel_size=(2, 2), stride=(2, 2))
        self.conv1 = nn.Conv2d(
            in_channels=1,
            out_channels=6,
            kernel_size=(5, 5),
            stride=(1, 1),
            padding=(0, 0),
        )
        self.conv2 = nn.Conv2d(
            in_channels=6,
            out_channels=16,
            kernel_size=(5, 5),
            stride=(1, 1),
            padding=(0, 0),
        )
        self.conv3 = nn.Conv2d(
            in_channels=16,
            out_channels=120,
            kernel_size=(5, 5),
            stride=(1, 1),
            padding=(0, 0),
        )
        self.linear1 = nn.Linear(120, 84)
        self.linear2 = nn.Linear(84, 10)

    def forward(self, x):
        x = self.relu(self.conv1(x))
        x = self.pool(x)
        x = self.relu(self.conv2(x))
        x = self.pool(x)
        x = self.relu(
            self.conv3(x)
        )  # num_examples x 120 x 1 x 1 --> num_examples x 120
        x = x.reshape(x.shape[0], -1)
        x = self.relu(self.linear1(x))
        x = self.linear2(x)
        return x


def test_lenet():
    x = torch.randn(64, 1, 32, 32)
    model = LeNet()
    torch.save(model, "weight.pt")
    return model(x)


if __name__ == "__main__":
    out = test_lenet()

    print(out.shape)
  • 3 netron 查看网络结构
    https://netron.app/
    lenet 学习 pytorch 代码_第2张图片

你可能感兴趣的:(pytorch,学习,深度学习)