拉格朗日反演学习笔记

拉格朗日反演

证明

对于两个函数 f ( x ) , g ( x ) f(x),g(x) f(x),g(x),若 f ( g ( x ) ) = x f(g(x))=x f(g(x))=x f ( x ) , g ( x ) f(x),g(x) f(x),g(x)的常数项为 0 0 0,一次项不为 0 0 0,那么称这两个函数互为复合逆。当然,根据 f ( g ( x ) ) = x f(g(x))=x f(g(x))=x可以推出 g ( f ( x ) ) = x g(f(x))=x g(f(x))=x,证明: f ( g ( f ( x ) ) ) = f ( x ) f(g(f(x)))=f(x) f(g(f(x)))=f(x),令 y = f ( x ) y=f(x) y=f(x),带入可得 f ( g ( y ) ) = y f(g(y))=y f(g(y))=y

对于互为复合逆的函数 f ( x ) , g ( x ) f(x),g(x) f(x),g(x),拉格朗日反演的两种形式如下:
[ x n ] f ( x ) = 1 n [ x − 1 ] 1 g ( x ) n [ x n ] h ( f ( x ) ) = 1 n [ x − 1 ] h ′ ( x ) g ( x ) n \begin{aligned}\\ [x^n]f(x)&=\frac{1}{n}[x^{-1}]\frac{1}{g(x)^n}\\ [x^n]h(f(x))&=\frac{1}{n}[x^{-1}]\frac{h'(x)}{g(x)^n} \end{aligned} [xn]f(x)[xn]h(f(x))=n1[x1]g(x)n1=n1[x1]g(x)nh(x)
现在分别对这两个式子进行证明:

形式一

f ( x ) = ∑ i ≥ 0 a i x i f(x)=\sum_{i\ge 0}a_ix^i f(x)=i0aixi,那么有:
f ( g ( x ) ) = x ∑ i ≥ 0 a i g ( x ) i = x ∑ i ≥ 0 i a i g ( x ) i − 1 g ′ ( x ) = 1 ∑ i ≥ 0 i a i g ( x ) i − n − 1 g ′ ( x ) = 1 g ( x ) n [ x − 1 ] ∑ i ≥ 0 i a i g ( x ) i − n − 1 g ′ ( x ) = [ x − 1 ] 1 g ( x ) n \begin{aligned} f(g(x)) & =x\\ \sum_{i \ge 0}a_ig(x)^i & =x\\ \sum_{i \ge 0}ia_ig(x)^{i-1}g'(x) & =1\\ \sum_{i \ge 0}ia_ig(x)^{i-n-1}g'(x) & =\frac{1}{g(x)^n}\\ [x^{-1}]\sum_{i \ge 0}ia_ig(x)^{i-n-1}g'(x) & =[x^{-1}]\frac{1}{g(x)^n} \end{aligned} f(g(x))i0aig(x)ii0iaig(x)i1g(x)i0iaig(x)in1g(x)[x1]i0iaig(x)in1g(x)=x=x=1=g(x)n1=[x1]g(x)n1
这里要用到一个引理:
[ x − 1 ] g k ( x ) g ′ ( x ) = [ k = − 1 ] [x^{-1}]g^k(x)g'(x)=[k=-1] [x1]gk(x)g(x)=[k=1]
证明可以考虑对式子进行变形:当 k ≠ − 1 k\not =-1 k=1时, [ x − 1 ] g k ( x ) g ′ ( x ) = [ x − 1 ] [ g ( x ) k + 1 k + 1 ] ′ [x^{-1}]g^k(x)g'(x)=[x^{-1}][\frac{g(x)^{k+1}}{k+1}]' [x1]gk(x)g(x)=[x1][k+1g(x)k+1],那么根据导数的计算可知 [ x − 1 ] [x^{-1}] [x1]必定为 0 0 0。当 k = − 1 k=-1 k=1时, [ x − 1 ] g k ( x ) g ′ ( x ) = [ x − 1 ] g ′ ( x ) g ( x ) [x^{-1}]g^k(x)g'(x)=[x^{-1}]\frac{g'(x)}{g(x)} [x1]gk(x)g(x)=[x1]g(x)g(x),根据条件可知 [ x 0 ] g ( x ) = 0 [x^0]g(x)=0 [x0]g(x)=0,所以可以再变形为 [ x 0 ] g ′ ( x ) g ( x ) / x [x^0]\frac{g'(x)}{g(x)/x} [x0]g(x)/xg(x),再根据条件可知分子分母的常数项都是 1 1 1,所以除完之后常数项仍为 1 1 1,所以就得到了 [ x − 1 ] g k ( x ) g ′ ( x ) = 1 [x^{-1}]g^k(x)g'(x)=1 [x1]gk(x)g(x)=1,综上,得证。

把这个引理应用到等式的左侧,可知只有当 i = n i=n i=n [ x − 1 ] [x^{-1}] [x1]不为 0 0 0,所以可以得到如下式子:
n a n = [ x − 1 ] 1 g ( x ) n [ x n ] f ( x ) = 1 n [ x − 1 ] 1 g ( x ) n \begin{aligned} na_n & =[x^{-1}]\frac{1}{g(x)^n}\\ [x^n]f(x) & =\frac{1}{n}[x^{-1}]\frac{1}{g(x)^n} \end{aligned} nan[xn]f(x)=[x1]g(x)n1=n1[x1]g(x)n1
故得证。

形式二

h ( f ( x ) ) = A ( x ) = ∑ i ≥ 0 a i x i h(f(x))=A(x)=\sum_{i \ge 0}a_ix^i h(f(x))=A(x)=i0aixi,那么有:
f ( g ( x ) ) = x h ( f ( g ( x ) ) ) = h ( x ) A ( g ( x ) ) = h ( x ) ∑ i ≥ 0 a i g ( x ) i = h ( x ) ∑ i ≥ 0 i a i g ( x ) i − 1 g ′ ( x ) = h ′ ( x ) ∑ i ≥ 0 i a i g ( x ) i − n − 1 g ′ ( x ) = h ′ ( x ) g ( x ) n [ x − 1 ] ∑ i ≥ 0 i a i g ( x ) i − n − 1 g ′ ( x ) = [ x − 1 ] h ′ ( x ) g ( x ) n n a n = [ x − 1 ] h ′ ( x ) g ( x ) n [ x n ] h ( f ( x ) ) = 1 n [ x − 1 ] h ′ ( x ) g ( x ) n \begin{aligned} f(g(x)) & =x\\ h(f(g(x))) & = h(x)\\ A(g(x)) & =h(x)\\ \sum_{i \ge 0}a_ig(x)^i & =h(x)\\ \sum_{i \ge 0}ia_ig(x)^{i-1}g'(x) & =h'(x)\\ \sum_{i \ge 0}ia_ig(x)^{i-n-1}g'(x) & =\frac{h'(x)}{g(x)^n}\\ [x^{-1}]\sum_{i \ge 0}ia_ig(x)^{i-n-1}g'(x) & =[x^{-1}]\frac{h'(x)}{g(x)^n}\\ na_n & =[x^{-1}]\frac{h'(x)}{g(x)^n}\\ [x^n]h(f(x)) & =\frac{1}{n}[x^{-1}]\frac{h'(x)}{g(x)^n} \end{aligned} f(g(x))h(f(g(x)))A(g(x))i0aig(x)ii0iaig(x)i1g(x)i0iaig(x)in1g(x)[x1]i0iaig(x)in1g(x)nan[xn]h(f(x))=x=h(x)=h(x)=h(x)=h(x)=g(x)nh(x)=[x1]g(x)nh(x)=[x1]g(x)nh(x)=n1[x1]g(x)nh(x)
综上,得证。

你可能感兴趣的:(学习笔记,c++)